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Midterm 1

Last Name First Name SID

• You have 10 minutes to read the exam and 90 minutes to complete this exam.

• The maximum you can score is 120, but 100 points is considered perfect.

• The exam is not open book, but you are allowed to consult the cheat sheet that we provide.
No calculators or phones.

• No form of collaboration between the students is allowed. If you are caught cheating, you
may fail the course and face disciplinary consequences.

• Show all work to get any partial credit.

• Take into account the points that may be earned for each problem when splitting your
time between the problems.

Problem points earned out of

Problem 1 30

Problem 2 20

Problem 3 10

Problem 4 20

Problem 5 20

Problem 6 20

Total 100 (+20)
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Problem 1: Answer these questions briefly but clearly. [30]

(a) [6] Let X ∼ N (0, 1). Compute E[|X|].

One has

E[|X|] =

∫ ∞
−∞
|x| 1√

2π
exp
(
−x

2

2

)
dx = 2

1√
2π

∫ ∞
0

x exp
(
−x

2

2

)
dx =

√
2

π
.

(b) [6] Suppose that you are in a Second-Price Auction with n other bidders, and all other
bidders draw their valuations uniformly and independently from the interval [0, 1]. If your
valuation is v, and everyone including you bids their own valuation, what is your expected profit
from the auction? (Remember that if you don’t win the auction, you don’t pay anything.)

Let Xi be a random variable for the valuation of the ith bidder, and let X = max
1≤i≤n

Xi. Then,

your expected profit is

P(X < v)E[v −X | X < v] = vn
(
v −

∫ v

0
x
nxn−1

vn
dx
)

= vn
(
v − nv

n+ 1

)
=

1

n+ 1
vn+1.

(c) [6] Recall the soliton distribution we used for encoding messages in the fountain codes lab. In
this setting, n data chunks were encoded into n packets, which are XORs of d many randomly
selected data chunks, where d is drawn from a degree distribution p(·). Assuming a perfect
channel, where the probability of a packet being erased is 0, show that the probability that
this scheme fails to decode the original message, P(failure) ≥ e−1 as n→∞.

The Taylor series ex = limn→∞(1 + x
n)n may come in handy.

p(d) =


0, d ≤ 0 or d > n
1
n , d = 1

1
d(d−1) , 1 ≤ d ≤ n

The probability of failure is lower bounded by the probability that we are unable to start
peeling, i.e. the probability that no degree 1 packets were originally sent.

P(no deg 1 packets) = P(Packet 1 isn’t degree 1)n =
(

1− 1

n

)n
→ e−1

(d) [6] Tom Brady just lost the Super Bowl, and he needs to validate that he is strong enough
to keep playing football. He decides to throw a football as far as he can each day, and keep track
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of the farthest throw he has recorded so far; we will call this farthest throw his personal best.
The distance that he throws the football is drawn from a continuous non-negative distribution
and all throws are i.i.d. What is the expected number of times, E[T ], that his personal
best changes over n throws?

Assume that on day one, his personal best is distance 0 yards.

E[T ] =
n∑
i=1

E[Ti] =
n∑
i=1

1

i
≈ lnn.

Ti = 1 if the ith throw goes farther than all the other throws he did previously. Because the
ordering ranks of each of these throws is equally likely, the probability that the longest throw of
these i occurred at the ith position is 1/i.

(e) [6]

We consider a bag with red and blue balls. The number of red balls is Poisson distributed with
parameter λr, and the number of blue balls is independently Poisson distributed with parameter
λb. Conditioned on there being n (greater than 1) balls in the bag, what is the distribution of
the number of blue balls? (Leave your answer in terms of n, λr, and λb.)

Let B be the number of blue balls and let R be the number of red balls. Then, for b = 0, 1, . . . , n,

P(B = b | B +R = n) =
P(B = b, B +R = n)

P(B +R = n)
=

P(B = b, R = n− b)
P(B +R = n)

=
λbbe−λbλn−br e−λr/(b!(n− b)!)

(λb + λr)ne−(λb+λr)/n!
=

(
n

b

)( λb

λb + λr

)b( λr

λb + λr

)n−b
.

Thus, B ∼ Binomial(n, p) where p = λb/(λb + λr).
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Problem 2: Bounds [20]

(a) [10] We have a random walk over the integers starting at zero. Each time we either move
left or right with equal probability. Let Sn be a random variable which is equal to the integer
that we lie on at time n. So S0 = 0 and Sn = Y1 + · · · + Yn, where each Yi is either +1 or −1
with probability 1/2, independently.

Show that

P(|Sn| ≥ t) ≤ 2e−
t2

2n , for any t ≥ 0.

Hint: Recall that in homework 4 you showed that if X1, . . . , Xn are independent Bernoulli(q),
then

P(|X1 + · · ·+Xn − nq| ≥ ε) ≤ 2e−
2ε2

n , for any ε ≥ 0.

Let Xi = Yi+1
2 and observe that with this transform each Yi ∼ Bernoulli(1/2), independently.

So using the result from the homework, with ε = t/2 we have that

P
(∣∣∣∣ n∑

i=1

Yi

∣∣∣∣ ≥ t) = P
(∣∣∣∣ n∑

i=1

2Xi − n
∣∣∣∣ ≥ t)

= P
(∣∣∣∣ n∑

i=1

Xi − n
1

2

∣∣∣∣ ≥ t

2

)
≤ 2 exp

(
− t

2

2n

)
.

(b) [10] We have seen that the Markov bound can be quite loose. However, this need not
always be true. For a given positive integer k, describe a random variable X that assumes only
non-negative values such that: P(X ≥ kE(X)) = 1/k.

Let X = k with probability 1/k and X = 0 otherwise. Then E[X] = 1 and

P(X ≥ kE[X]) = P(X ≥ k) =
1

k
.
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Problem 3: Entropy [10]

Recall the definitions of entropy and joint entropy for discrete random variables:

H(X)
∆
= E[− log2 pX(X)] = −

∑
x

pX(x) log2 pX(x),

H(X,Y )
∆
= E[− log2 pX,Y (X,Y )] = −

∑
x

∑
y

pX,Y (x, y) log2 pX,Y (x, y).

(a) [5] Let U ∼ Uniform{1, 2, . . . , n}. Give a closed form expression for H(U).

H(U) = E
[
− log2

1

n

]
= log2 n.

(b) [5] Assume that X,Y are independent. Express H(X,Y ) in terms of H(X) and H(Y ).

H(X,Y ) = E[− log2{pX(X)pY (Y )}]
= E[− log2 pX(X)− log2 pY (Y )]

= E[− log2 pX(X)] + E[− log2 pY (Y )]

= H(X) +H(Y ).
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Problem 4: Transformations of Random Variables [20]

Consider X,Y i.i.d. Uniform[0, 1]. Let Z = ln X
Y .

(a) [5] Show that − lnY is exponentially distributed with parameter 1.

Let W = − lnY .
FW (w) = P(− lnY ≤ a) = P(Y ≥ e−a) = 1− e−a

By pattern matching, we can see that W ∼ Exponential(1).

Alternate solution using the change of variables formula: Let W = − lnY . Then fW (w) =
fY (h(w))|h′(w)|, where h(W ) = Y . Thus, fW (w) = ewfY (ew) = ew, for w > 0, i.e., W ∼
Exponential(1). Therefore, Z = Z1 − Z2 where Z1, Z2 ∼ Exponential(1) are independent.

(b) [5] Find the moment generating function of Z, MZ .

Observe that by independence,

MZ(s) = MZ1(s)MZ2(−s) =
1

1 + s

1

1− s
=

1

1− s2
, |s| < 1.

The MGF of Z can also be calculated from its density directly.

MZ(s) = E[esZ ] =

∫ ∞
−∞

esz
1

2
e−|z| dz =

∫ 0

−∞
esz

1

2
ez dz +

∫ ∞
0

esz
1

2
e−z dz

=
1

2

[∫ 0

−∞
ez(s+1) dz +

∫ ∞
0

ez(s−1) dz
]

=
1

2

[ez(s+1)

s+ 1

∣∣∣0
z=−∞

− ez(s−1)

s− 1

∣∣∣∞
z=0

]
We can simplify this to the following, however we must note that |s| < 1 for the integrals to
converge.

MZ(s) =
1

1− s2
, |s| < 1

(c) [5] Find varZ.

The easy way is to observe that by independence of Z1 and Z2, varZ = varZ1 + varZ2 = 2.

Alternatively, E[Z] = 0, by symmetry. Thus varZ = E[Z2].

M ′Z(s) =
2s

(1− s2)2

M ′′Z(s) =
2(1− s2)2 − 2s(2(1− s2))(−2s)

(1− s2)4

M ′′Z(s)
∣∣∣
s=0

= 2
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varZ = 2

(d) [5] Find the PDF of Z, fZ .

From here we can compute P(Z > z) (for z > 0) by conditioning:

P(Z > z) = E[P(Z1 − Z2 > z | Z2)] = exp(−z)E[exp(−Z2)] =
1

2
exp(−z).

Thus, fZ(z) = exp(−z)/2 for z > 0, and by symmetry, we conclude that fZ(z) = exp(−|z|)/2.

Another method is to use partial fraction decomposition,

MZ(s) =
1

1− s2
=

1

2

1

1− s
+

1

2

1

1 + s

and then (by pattern matching) observe that M1(s) = 1/(1 − s) is the MGF corresponding to
density f1(x) = e−x1{x ≥ 0} and M2(s) = 1/(1 + s) is the MGF corresponding to density
f2(x) = ex1{x ≤ 0} so by inverting the MGF we get

fZ(z) =
1

2
f1(z) +

1

2
f2(z) =

1

2
e−z1{z ≥ 0}+

1

2
ez1{z ≤ 0} =

1

2
exp(−|z|).

Alternatively, we can convolve the two identically distributed random variables.

fZ(z) =

∫ ∞
−∞

fW (w)fW (w − z) dw

Notice that w ∈ (ln 0, ln 1) = (−∞, 0). Similarly, w − z ∈ (−∞, z) or w ∈ (−∞, z). Thus the
limits of the integral are (−∞,min(z, 0)). We can split it into two cases: z < 0 and z ≥ 0.

z < 0 : fZ(z) =

∫ 0

−∞
ewew−z dw = e−z

∫ 0

−∞
e2w dw =

1

2
e−z

z ≥ 0 : fZ(z) =

∫ z

−∞
ewew−z dw = e−z

∫ z

−∞
e2w dw =

1

2
ez

Combining the 2 parts, we have:

fZ(z) =
1

2
e−|z|
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Problem 5: Valentine’s Day [20]

The joint density of (X,Y ) is uniform on the shaded region in Figure 1. Mathematically, the
shaded region consists of two half-circles (each of radius one) centered at (−1, 0) and (1, 0), along
with a triangle in the lower half-plane.

0−2 2

1

−2

Figure 1: Joint density of (X,Y ).

(a) [7] Find the value of the joint density in the shaded region.

The total area in the shaded region is π + 4, so the value of the joint density is (π + 4)−1.

(b) [8] Find the marginal density of Y .

Since the joint density is uniform over the shaded region, the marginal density of Y at y
is proportional to the width of the shaded region at vertical position y with constant of propor-
tionality (π + 4)−1.

fY (y) =
2

π + 4


y + 2, −2 < y < 0

2
√

1− y2, 0 < y < 1

0, otherwise

(c) [5] Find cov(X,Y ). (Don’t handwave—explain your answer carefully.)

Note that E[X] = 0 by symmetry. Also, E[XY ] = E[E[XY | Y ]] = E[Y E[X | Y ]], but
by symmetry, for each fixed y ∈ [−2, 1] then E[X | Y = y] = 0, so E[XY ] = 0. Hence,
cov(X,Y ) = 0.
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Problem 6: Waiting in Line [20]

You are first in line to be served by either of 2 servers, Alice and Bob, who are busy with their
current customers. You will be served as soon as the first server finishes. The service times
of Alice and Bob are independently and exponentially distributed with (positive) rates a and b
respectively, i.e. Alice’s distribution is Exponential(a), and Bob’s is Exponential(b).

(a) [5] Find the probability that Alice will be your next server.

Let A denote Alice’s service time and B denote Bob’s service time. Then,

P(A < B) = E[P(A < B | A)] = E[exp(−bA)] =
a

a+ b
.

(b) [5] True or False? (you must prove your answer): The probability that you will be the last
to be served (among you and the two current customers) is less than a half if and only if a is
not equal to b.

By the Memoryless Property, if Alice finishes first, the probability that you are the last cus-
tomer to be served is b/(a+ b) by the same reasoning in (a) (Bob’s service time, which is now a
fresh exponential, must beat Alice’s); if Bob finishes first, the probability that you are the last
customer to be served is a/(a+ b). Thus,

P(you are last to be served) =
a

a+ b

b

a+ b
+

b

a+ b

a

a+ b
=

2ab

(a+ b)2
.

Then, 2ab/(a+ b)2 < 1/2 if and only if 4ab < a2 + b2 + 2ab, i.e., 2ab < a2 + b2, but equality only
holds when a = b, so the answer is True.

Proof : 0 ≤ (a − b)2 = a2 + b2 − 2ab with equality if and only if a = b, so 2ab ≤ a2 + b2 with
equality if and only if a = b.

(c) [10] What is the distribution of your wait time? Your answer should not include integrals.

We consider the waiting time W = min(A,B).

P(W > w) = P
(
min(A,B) > w

)
= P(A > w) · P(B > w) = e−wa · e−wb = e−w(a+b)

Thus we can see that W ∼ Exponential(a+ b).
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