CS 61A Structure and Interpretation of Computer Programs
Spring 2018 MIDTERM 1 SOLUTIONS

INSTRUCTIONS

e You have 2 hours to complete the exam.

e The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5" x 11"
crib sheet of your own creation and the official CS 61A midterm 1 study guide.

e Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

POLICIES & CLARIFICATIONS

e If you need to use the restroom, bring your phone and exam to the front of the room.

e You may use built-in Python functions that do not require import, such as min, max, pow, and abs. You may
not use functions defined on your study guide unless clearly specified in the question.

e For fill-in-the blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

e Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

http://berkeley.edu

1. (12 points) Frame of Thrones

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”, but
include all output displayed before the error. To display a function value, write “Function”. The first two rows
have been provided as examples.

The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have first started python3 and executed the statements on the left.

from operator import add, sub

def winterfell(a, b):
a
b
return b(a+l, b(a))

da, ny = 20, 18

Expression Interactive Output
while da > ny: sub(pow (10, 2), 1) 99
da = ny print(4, 5) + 1 45
da, ny =ny + 1, da + 3 Error
2
def tar(gar, yen): (print(2) or 3) // (0 or 1) | 3
if print(yen): 3
print(yen + 1) winterfell(2, print) 3 None
return gar(yen)
21
def st(ar, k=None): ny
return lambda a, y: ar(y, a) 8
tar(lambda x: x-7, 8) 1
night = st(sub)
king = st(st(pow)) night (king(2, 3), 4) -4
def jon(sn, ow): g
print (ow) jon(snow(5), 2) 0
jon = sn(ow)
print (ow)

return jon

def snow(ow):
def tarly(snow):
return ow + snow
ow += 2
return tarly

Name:

2. (8 points) Stranger Frames

Fill in the environment diagram that results from executing the code
on the right until the entire program is finished, an error occurs, or all
frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

e Add all missing names and parent annotations to all local frames.

e Add all missing values created or referenced during execution.

e Show the return value for each local frame.

1 | def lucas(mike):

2 return will

3

4 | def dustin(lucas):

5 will =

6 def dustin(mike):
7 will = 2

8 return lucas
9

10

11 fwill =5 + 6

12 | lucas = dustin(lucas)
13 | lucas(max)

return lambda mad: dustin(3) (will)

dustin(lucas) [parent=Globall

lucas(mike) [parent=Globall

lucas(mike) [parent=Global] <—
dustin(mike) [parent=f1]
A(mad) [parent=f1]

max(...) [parent=Globall

Global frame lucas
dustin ’
will ’ 11 func
£1: dustin [parent= Global] func
lucas ’ —
will] 1
func
dustin ’ —_—
’ \>func
Return Value —> func
f2: A [parent= f1 |
| __— func
mad ’
Return Value 11
f3; dustin [parent= f1]
mike B
will ’ 2
Return Value
f4: lucas [parent= Global]
mike ’ 1
Return Value 11

3. (10 points) Choose Wisely

(a) (4 pt) Implement sum_some, which takes a non-negative integer n and a function p. It returns the sum of
all the digits d for which p returns a true value when given d as an argument. Assume that the function p
takes a single digit d (from 0 to 9) and returns either True or False.

def sum_some(n, p):
"""Return the sum of the digits of N for which P returns a true value.

>>> even = lambda d: d % 2 ==

>>> big = lambda d: d > 5

>>> sum_some (124567, even) # Sum the even digits: 2 + 4 + 6
12

>>> sum_some (124567, big) # Sum the big digits: 6 + 7

13

total = 0O
while n:
if p(n % 10):
total += n % 10

n=n// 10

return total

(b) (4 pt) Implement sum_largest, which takes non-negative integers n & k. It sums the largest k digits of n.

def sum_largest(n, k):
"""Return the sum of the K largest digits of N.

>>> sum_largest (2018, 2) # 2 and 8 are the two largest digits (larger than 0 and 1).
10

>>> sum_largest (12345, 10) # There are only five digits, so all are included in the sum.
15

if n == 0 or k == 0:

return O

m
|

=n % 10 + sum_largest(n // 10, k - 1)
b = sum_largest(n // 10, k)

return max(a, b)

(c) (2 pt) Complete the expression below by only adding parentheses so that the whole expression evaluates
to 2018. Each blank should be filled with one or more parentheses.

(lambda a, x: x + (lambda y: lambda z: y+z+1000) (1000 _)(_ 10 _))(_ 5, _(_ lambda: 8 _)(O_)

Name:

4. (10 points) Editor

def

def

Definitions. An edit is a pure function that takes a non-negative integer and returns a non-negative integer.
An editor for a non-negative integer n is a function that takes an edit, applies it to n, displays the result, and

then returns an editor for the result.

(a) (3 pt) Implement make_editor, which takes a non-negative integer n and a one-argument function pr. It

returns an editor for n that uses pr to display the result of each edit.

(b) (5 pt) Implement insert, which takes a single digit d (from 0 to 9) and a non-negative position k. It returns
an edit that inserts d into its argument n at position k, where k counts the number of digits from the end of
n. Assume that k is not larger than the number of digits in n. Your solution must be recursive.

(c) (2 pt) Implement delete, which takes a non-negative integer k and returns an edit that deletes the last k

digits of its argument n. You may use pow or ** in your solution.

make_editor(n, pr):

"""Return an editor for N.

>>> f
>>> f = f(delete(3))

n is now 2

>>> f = f(insert(4, 0))
n is now 24

>>> f = f(insert(3, 1))
n is now 234

>>> f = f(insert(1, 3))
n is now 1234

>>> f = make_editor (123,
0

def editor(edit):

result = edit(n)

pr(result)

make_editor(2018, lambda n: print('n is now', n))

delete the last 3 digits from the end of 2018
insert digit 4 at the end of 2 (position 0)

insert digit 3 in the middle of 24 (position 1)
insert digit 1 at the start of 234 (position 3)

print) (delete(10)) # delete 10 digits from the end of 123

return make_editor(result, pr)

return editor
insert(d, k):
def edit(n):

if k == O:

return d + 10 * n

else:

return n % 10 + 10 * insert(d, k-1) (n//10)

return edit

delete = lambda k: lambda n:

n // 10 **x k

No more questions.

