
Physics 7B Midterm 2 Solutions - Fall 2017
Professor A. Lanzara

Problem 1

(a) For Gauss’ Law, one can show that the electric field of an infinitely long wire with
linear charge density λ has magnitude
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The total electric field is the sum of the electric fields of the two wires, so
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(b) Since we are only moving in the y-direction, d~s = ŷdy and so
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(c) The work done can be found by applying the result of part(b) as follows:
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(d) If we take the negative integral of the electric field for a single wire, we find
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where C is a constant that defines the zero of the potential. Note that the logarithm
blows up as r → ∞, so we would need C to be infinite for the zero of potential to be
at infinity. This would make the potential not helpful, so we do not do it.

Problem 2

(a) The electric field outside the sphere is just that of a point charge with charge Q:
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Inside the conductor, the electric field is zero. We have the following plot:

(b) Outside the sphere, we easily find
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Inside the sphere, the potential is constant and equal to the value at the surface of the
conductor:

V =
1

4πε0

Q

b
for r < b

(c) Here we use conservation of energy: Ui = Uf +K so that
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(d) Inside the shell, there is no electric field, so the acceleration a is zero - a = 0

Problem 3

(a) We will consider the semicircle to be made of a charge density that varies with angle
θ, which starts counterclockwise from the x-axis. The electric field in the x-direction of
an infinitesimal amount of charge on the wire is dEx = −E cos θ so that
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(b) Following the same steps as above, we have dEy = −dE sin θ so
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(c) We can answer this question using the calculations above. For the symmetry of the
problem, we know that if the semicircle is composed entirely of positive charge, the
electric field in the x direction should be zero: Ex = 0 . The electric field in the y-
direction should have the same magnitude as the field in part (a) but in the negative
y-direction:
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Problem 4

(a) The energy in a capacitor is given by U = 1
2
CV 2. Since the battery remains connected

to the capacitor, we have initial and final energies
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(b) The force between the plates is given by
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so that the work required is
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(c) To calculate the change in energy of the battery, we used the fact that the work done is
equal to the change in energy of the battery plus the change in energy of the capacitor:

W = ∆Ucap + ∆Ubatt
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(d) If the battery is disconnected, then the charge on the capacitor remains constant while

the potential changes. Then we can use U = 1
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C
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Where we have used Q = ε0AV
x

Problem 5

(a) Each infinitesimally thin wafer contributes a resistance

dR =
ρdx

πr2(x)

where r(x) gives the radius as a function from the distance from the left side of the
resistor:
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(b) The current is the same through all of the surfaces. Otherwise, charge would build up
inside the conductor.

(c) From the relation E = ρj, we see that ΦE = EA = ρI. Since I is constant through
each surface, electric flux must be as well.

(d) The magnitude of the electric field decreases as we go from 1 to 2 since the current
density decreases.


