
CS 61A Structure and Interpretation of Computer Programs
Fall 2017 Midterm 2 Solutions

INSTRUCTIONS

� You have 2 hours to omplete the exam.

� The exam is losed book, losed notes, losed omputer, losed alulator, exept two hand-written 8.5" × 11"

rib sheets of your own reation and the two o�ial CS 61A midterm study guides.

� Mark your answers on the exam itself. We will not grade answers written on srath paper.

Last name

First name

Student ID number

CalCentral email (_�berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.

(please sign)

POLICIES & CLARIFICATIONS

� If you need to use the restroom, bring your phone and exam to the front of the room.

� Before asking a question, read the announements on the sreen/board. We will not answer your question

diretly. If we deide to respond, we'll add our response to the sreen/board so everyone an see the lari�ation.

� For �ll-in-the blank oding problems, we will only grade work written in the provided blanks. You may only

write one Python statement per blank line, and it must be indented to the level that the blank is indented.

� Unless otherwise spei�ed, you are allowed to referene funtions de�ned in previous parts of the same question.

http://berkeley.edu

2

1. (12 points) By Any Other Name

For eah of the expressions in the table below, write the output displayed by the interative Python interpreter

when the expression is evaluated. The output may have multiple lines. The interative interpreter displays

the repr string of the value of a suessfully evaluated expression, unless it is None. If an error ours, write

�Error�, but inlude all output displayed before the error. The �rst row has been provided as an example.

Assume that you have started python3 and exeuted the ode shown on the left �rst, then you evaluate eah

expression on the right in order. Statements and expressions sent to the interpreter have a umulative e�et.

lass Plant:

k = 1

kind = "green"

def __init__(self):

self.k = Plant.k

Plant.k = self.k + 1

if self.k > 3:

Plant.name = lambda t: "tree"

Plant.k = 6

def name(self):

return kind

def __repr__(self):

s = self.name() + " "

return s + str(self.k)

lass Flower(Plant):

kind = "pretty"

def __repr__(self):

s = self.smell() + " "

return s + Plant.__repr__(self)

def smell(self):

return "bad"

lass Rose(Flower):

def name(self):

return "rose"

def smell(self):

return "nie"

lass Garden:

def __init__(self, kind):

self.name = kind

self.smell = kind().smell

def smell(self):

return self.name.kind

f1 = Flower()

f2 = Flower()

Expression Interative Output

[2, 3℄ [2, 3℄

(1 pt) f1.name()

Error

(1 pt) f1.k

1

(1 pt) Plant().k

3

(1 pt) Rose.k

4

(2 pt) Plant()

tree 4

(2 pt) Rose()

nie rose 6

(2 pt) Garden(Flower).smell()

'bad'

(2 pt) Garden(Flower).name()

bad tree 6

Name: 3

2. (8 points) Buy Loal

Fill in the environment diagram that results from exeuting the ode below until the entire program is �nished,

an error ours, or all frames are �lled. You may not need to use all of the spaes or frames.

A omplete answer will:

� Add all missing names and parent annotations to frames.

� Add all missing values reated or referened during exeution.

� Show the return value for eah loal frame.

� Use box-and-pointer notation for list values. You do not need to write index numbers or the word �list�.

Important: The slash on line 11 means that the return expression ontinues on the next line.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

def f(L, x):

L[1℄ = L

def g(, h, b):

nonloal x

x =

if == 0:

b.append(5)

b = L + b

return h

else:

return \

g(-1,

lambda: [, x℄,

b)

p = g(1, None, [4℄)

x += 3

return p()

r = f([0, 0℄, 1)

Global frame

f

r

fun f(L, x) [parent=Global℄

f1: f [parent= Global ℄

L

x 3

p

g

Return value

0

0 1

fun g(, h, b) [parent= f1℄

4

0

5

1

fun λ () <line 13> [parent=f2℄

0

0 1

4

2

5

3

1

0

3

1

f2: g [parent= f1 ℄

 1

h None

b

Return value

f3: g [parent= f1 ℄

 0

h

b

Return value

f4: λ [parent= f2 ℄

Return value

4

3. (10 points) Pumpkin Splie Latte

(a) (2 pt) Implement splie, whih takes two lists a and b and a non-negative integer k that is less than or

equal to the length of a. It returns the result of spliing b into a at k. That is, it returns a new list ontaining

the �rst k elements of a, then all elements of b, then the remaining elements of a.

def splie(a, b, k):

"""Return a list of the first k elements of a, then all of b, then the rest of a.

>>> splie([2, 3, 4, 5℄, [6, 7℄, 2)

[2, 3, 6, 7, 4, 5℄

"""

return a[:k℄ + b + a[k:℄

(b) (3 pt) Implement all_splie, whih returns a list of all the non-negative integers k suh that spliing list

b into list a at k reates a list with the same ontents as . Assume that splie is implemented orretly.

def all_splie(a, b,):

"""Return a list of all k suh that spliing b into a at position k gives .

>>> all_splie([1, 2℄, [3, 4℄, [1, 3, 4, 2℄)

[1℄

>>> all_splie([1, 2, 1, 2℄, [1, 2℄, [1, 2, 1, 2, 1, 2℄)

[0, 2, 4℄

"""

return [k for k in range(len(a) + 1) if splie(a, b, k) == ℄

() (5 pt) Implement splink, whih takes two Link instanes a and b and a non-negative integer k that is less

than or equal to the length of a. It returns a Link instane ontaining the �rst k elements of a, then all

elements of b, then the remaining elements of a. The Link lass is de�ned on the midterm 2 study guide.

Important: You may not use len, in, for, list, sliing, element seletion, addition, or list omprehensions.

def splink(a, b, k):

"""Return a Link ontaining the first k elements of a, then all of b, then the rest of a.

>>> splink(Link(2, Link(3, Link(4, Link(5)))), Link(6, Link(7)), 2)

Link(2, Link(3, Link(6, Link(7, Link(4, Link(5))))))

"""

if b is Link.empty:

return a

elif k == 0:

return Link(b.first, splink(a, b.rest, k))

return Link(a.first, splink(a.rest, b, k-1))

Name: 5

4. (11 points) Both Ways

(a) (4 pt) Implement both, whih takes two sorted linked lists omposed of Link objets and returns whether

some value is in both of them. The Link lass is de�ned on the midterm 2 study guide.

Important: You may not use len, in, for, list, sliing, element seletion, addition, or list omprehensions.

def both(a, b):

"""Return whether there is any value that appears in both a and b, two sorted Link instanes.

>>> both(Link(1, Link(3, Link(5, Link(7)))), Link(2, Link(4, Link(6))))

False

>>> both(Link(1, Link(3, Link(5, Link(7)))), Link(2, Link(7, Link(9)))) # both have 7

True

>>> both(Link(1, Link(4, Link(5, Link(7)))), Link(2, Link(4, Link(5)))) # both have 4 and 5

True

"""

if a is Link.empty or b is Link.empty:

return False

if a.first > b.first:

a, b = b, a

return a.first == b.first or both(a.rest, b)

(b) (2 pt) Cirle the Θ expression that desribes the minimum number of omparisons (e.g., <, >, <=,==, or >=

expressions) required to verify that two sorted lists of length n ontain no values in ommon.

Θ(1) Θ(logn) Θ(n) Θ(n2) Θ(2n) None of these

() (5 pt) Implement ways, whih takes two values start and end, a non-negative integer k, and a list of one-

argument funtions ations. It returns the number of ways of hoosing funtions f1, f2, ..., fj from ations,

suh that f1(f2(...(fj(start)))) equals end and j ≤ k. The same ation funtion an be hosen multiple times.

If a sequene of ations reahes end, then no further ations an be applied (see the �rst example below).

def ways(start, end, k, ations):

"""Return the number of ways of reahing end from start by taking up to k ations.

>>> ways(-1, 1, 5, [abs, lambda x: x+2℄) # abs(-1) or -1+2, but not abs(abs(-1))

2

>>> ways(1, 10, 5, [lambda x: x+1, lambda x: x+4℄) # 1+1+4+4, 1+4+4+1, or 1+4+1+4

3

>>> ways(1, 20, 5, [lambda x: x+1, lambda x: x+4℄)

0

>>> ways([3℄, [2, 3, 2, 3℄, 4, [lambda x: [2℄+x, lambda x: 2*x, lambda x: x[:-1℄℄)

3

"""

if start == end:

return 1

elif k == 0:

return 0

return sum([ways(f(start), end, k - 1, ations) for f in ations℄)

6

5. (9 points) Autumn Leaves

De�nition. A pile (of leaves) for a tree t with no repeated leaf labels is a ditionary in whih the label for

eah leaf of t is a key, and its value is the path from that leaf to the root. Eah path from a node to the root is

either an empty tuple, if the node is the root, or a two-element tuple ontaining the label of the node's parent

and the rest of the path (i.e., the path to the root from the node's parent).

(a) (5 pt) Implement pile, whih takes a tree onstruted using the tree data abstration. It returns a pile for

that tree. You may use the tree, label, branhes, and is_leaf funtions from the midterm 2 study guide.

def pile(t):

"""Return a dit that ontains every path from a leaf to the root of tree t.

>>> pile(tree(5, [tree(3, [tree(1), tree(2)℄), tree(6, [tree(7)℄)℄))

{1: (3, (5, ())), 2: (3, (5, ())), 7: (6, (5, ()))}

"""

p = {}

def gather(u, parent):

if is_leaf(u):

p[label(u)℄ = parent

for b in branhes(u):

gather(b, (label(u), parent))

gather(t, ())

return p

1 2 7

3 6

5

(b) (4 pt) Implement Path, a lass whose onstrutor takes a tree t onstruted by tree and a leaf_label.

Assume all leaf labels of t are unique. When a Path is printed, labels in the path from the root to the leaf of

t with label leaf_label are displayed, separated by dashes. Assume pile is implemented orretly.

lass Path:

"""A path through a tree from the root to a leaf, identified by its leaf label.

>>> a = tree(5, [tree(3, [tree(1), tree(2)℄), tree(6, [tree(7)℄)℄)

>>> print(Path(a, 7), Path(a, 2))

5-6-7 5-3-2

"""

def __init__(self, t, leaf_label):

self.pile, self.end = pile(t), leaf_label

def __str__(self):

path, s = self.pile[self.end℄, str(self.end)

while path:

path, s = path[1℄, str(path[0℄) + '-' + s

return s

1 2 7

3 6

5

