
CS 61A Structure and Interpretation of Computer Programs
Fall 2017 Midterm 2

INSTRUCTIONS

� You have 2 hours to 
omplete the exam.

� The exam is 
losed book, 
losed notes, 
losed 
omputer, 
losed 
al
ulator, ex
ept two hand-written 8.5" × 11"


rib sheets of your own 
reation and the two o�
ial CS 61A midterm study guides.

� Mark your answers on the exam itself. We will not grade answers written on s
rat
h paper.

Last name

First name

Student ID number

CalCentral email (_�berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.

(please sign)

POLICIES & CLARIFICATIONS

� If you need to use the restroom, bring your phone and exam to the front of the room.

� Before asking a question, read the announ
ements on the s
reen/board. We will not answer your question

dire
tly. If we de
ide to respond, we'll add our response to the s
reen/board so everyone 
an see the 
lari�
ation.

� For �ll-in-the blank 
oding problems, we will only grade work written in the provided blanks. You may only

write one Python statement per blank line, and it must be indented to the level that the blank is indented.

� Unless otherwise spe
i�ed, you are allowed to referen
e fun
tions de�ned in previous parts of the same question.

http://berkeley.edu


2

1. (12 points) By Any Other Name

For ea
h of the expressions in the table below, write the output displayed by the intera
tive Python interpreter

when the expression is evaluated. The output may have multiple lines. The intera
tive interpreter displays

the repr string of the value of a su

essfully evaluated expression, unless it is None. If an error o

urs, write

�Error�, but in
lude all output displayed before the error. The �rst row has been provided as an example.

Assume that you have started python3 and exe
uted the 
ode shown on the left �rst, then you evaluate ea
h

expression on the right in order. Statements and expressions sent to the interpreter have a 
umulative e�e
t.


lass Plant:

k = 1

kind = "green"

def __init__(self):

self.k = Plant.k

Plant.k = self.k + 1

if self.k > 3:

Plant.name = lambda t: "tree"

Plant.k = 6

def name(self):

return kind

def __repr__(self):

s = self.name() + " "

return s + str(self.k)


lass Flower(Plant):

kind = "pretty"

def __repr__(self):

s = self.smell() + " "

return s + Plant.__repr__(self)

def smell(self):

return "bad"


lass Rose(Flower):

def name(self):

return "rose"

def smell(self):

return "ni
e"


lass Garden:

def __init__(self, kind):

self.name = kind

self.smell = kind().smell

def smell(self):

return self.name.kind

f1 = Flower()

f2 = Flower()

Expression
Intera
tive Output

[2, 3℄ [2, 3℄

(1 pt) f1.name()

(1 pt) f1.k

(1 pt) Plant().k

(1 pt) Rose.k

(2 pt) Plant()

(2 pt) Rose()

(2 pt) Garden(Flower).smell()

(2 pt) Garden(Flower).name()



Name: 3

2. (8 points) Buy Lo
al

Fill in the environment diagram that results from exe
uting the 
ode below until the entire program is �nished,

an error o

urs, or all frames are �lled. You may not need to use all of the spa
es or frames.

A 
omplete answer will:

� Add all missing names and parent annotations to frames.

� Add all missing values 
reated or referen
ed during exe
ution.

� Show the return value for ea
h lo
al frame.

� Use box-and-pointer notation for list values. You do not need to write index numbers or the word �list�.

Important: The slash on line 11 means that the return expression 
ontinues on the next line.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

def f(L, x):

L[1℄ = L

def g(
, h, b):

nonlo
al x

x = 


if 
 == 0:

b.append(5)

b = L + b

return h

else:

return \

g(
-1,

lambda: [
, x℄,

b)

p = g(1, None, [4℄)

x += 3

return p()

r = f([0, 0℄, 1)

Global frame

f

fun
 f(L, x) [parent=Global℄

f1: [parent= ℄

Return value

f2: [parent= ℄

Return value

f3: [parent= ℄

Return value

f4: [parent= ℄

Return value



4

3. (10 points) Pumpkin Spli
e Latte

(a) (2 pt) Implement spli
e, whi
h takes two lists a and b and a non-negative integer k that is less than or

equal to the length of a. It returns the result of spli
ing b into a at k. That is, it returns a new list 
ontaining

the �rst k elements of a, then all elements of b, then the remaining elements of a.

def spli
e(a, b, k):

"""Return a list of the first k elements of a, then all of b, then the rest of a.

>>> spli
e([2, 3, 4, 5℄, [6, 7℄, 2)

[2, 3, 6, 7, 4, 5℄

"""

return ___________________________________________________________________________________

(b) (3 pt) Implement all_spli
e, whi
h returns a list of all the non-negative integers k su
h that spli
ing list

b into list a at k 
reates a list with the same 
ontents as 
. Assume that spli
e is implemented 
orre
tly.

def all_spli
e(a, b, 
):

"""Return a list of all k su
h that spli
ing b into a at position k gives 
.

>>> all_spli
e([1, 2℄, [3, 4℄, [1, 3, 4, 2℄)

[1℄

>>> all_spli
e([1, 2, 1, 2℄, [1, 2℄, [1, 2, 1, 2, 1, 2℄)

[0, 2, 4℄

"""

return ___________________________________________________________________________________

(
) (5 pt) Implement splink, whi
h takes two Link instan
es a and b and a non-negative integer k that is less

than or equal to the length of a. It returns a Link instan
e 
ontaining the �rst k elements of a, then all

elements of b, then the remaining elements of a. The Link 
lass is de�ned on the midterm 2 study guide.

Important: You may not use len, in, for, list, sli
ing, element sele
tion, addition, or list 
omprehensions.

def splink(a, b, k):

"""Return a Link 
ontaining the first k elements of a, then all of b, then the rest of a.

>>> splink(Link(2, Link(3, Link(4, Link(5)))), Link(6, Link(7)), 2)

Link(2, Link(3, Link(6, Link(7, Link(4, Link(5))))))

"""

if _______________________________________________________________________________________:

return a

elif _____________________________________________________________________________________:

return _______________________________________________________________________________

return ___________________________________________________________________________________



Name: 5

4. (11 points) Both Ways

(a) (4 pt) Implement both, whi
h takes two sorted linked lists 
omposed of Link obje
ts and returns whether

some value is in both of them. The Link 
lass is de�ned on the midterm 2 study guide.

Important: You may not use len, in, for, list, sli
ing, element sele
tion, addition, or list 
omprehensions.

def both(a, b):

"""Return whether there is any value that appears in both a and b, two sorted Link instan
es.

>>> both(Link(1, Link(3, Link(5, Link(7)))), Link(2, Link(4, Link(6))))

False

>>> both(Link(1, Link(3, Link(5, Link(7)))), Link(2, Link(7, Link(9)))) # both have 7

True

>>> both(Link(1, Link(4, Link(5, Link(7)))), Link(2, Link(4, Link(5)))) # both have 4 and 5

True

"""

if ______________________________________________________________________________________:

return False

if ______________________________________________________________________________________:

a, b = b, a

return __________________________________________________________________________________

(b) (2 pt) Cir
le the Θ expression that des
ribes the minimum number of 
omparisons (e.g., <, >, <=,==, or >=

expressions) required to verify that two sorted lists of length n 
ontain no values in 
ommon.

Θ(1) Θ(logn) Θ(n) Θ(n2) Θ(2n) None of these

(
) (5 pt) Implement ways, whi
h takes two values start and end, a non-negative integer k, and a list of one-

argument fun
tions a
tions. It returns the number of ways of 
hoosing fun
tions f1, f2, ..., fj from a
tions,

su
h that f1(f2(...(fj(start)))) equals end and j ≤ k. The same a
tion fun
tion 
an be 
hosen multiple times.

If a sequen
e of a
tions rea
hes end, then no further a
tions 
an be applied (see the �rst example below).

def ways(start, end, k, a
tions):

"""Return the number of ways of rea
hing end from start by taking up to k a
tions.

>>> ways(-1, 1, 5, [abs, lambda x: x+2℄) # abs(-1) or -1+2, but not abs(abs(-1))

2

>>> ways(1, 10, 5, [lambda x: x+1, lambda x: x+4℄) # 1+1+4+4, 1+4+4+1, or 1+4+1+4

3

>>> ways(1, 20, 5, [lambda x: x+1, lambda x: x+4℄)

0

>>> ways([3℄, [2, 3, 2, 3℄, 4, [lambda x: [2℄+x, lambda x: 2*x, lambda x: x[:-1℄℄)

3

"""

if ______________________________________________________________________________________:

return 1

elif ____________________________________________________________________________________:

return 0

return ________([______________________________________________________ for f in a
tions℄)



6

5. (9 points) Autumn Leaves

De�nition. A pile (of leaves) for a tree t with no repeated leaf labels is a di
tionary in whi
h the label for

ea
h leaf of t is a key, and its value is the path from that leaf to the root. Ea
h path from a node to the root is

either an empty tuple, if the node is the root, or a two-element tuple 
ontaining the label of the node's parent

and the rest of the path (i.e., the path to the root from the node's parent).

(a) (5 pt) Implement pile, whi
h takes a tree 
onstru
ted using the tree data abstra
tion. It returns a pile for

that tree. You may use the tree, label, bran
hes, and is_leaf fun
tions from the midterm 2 study guide.

def pile(t):

"""Return a di
t that 
ontains every path from a leaf to the root of tree t.

>>> pile(tree(5, [tree(3, [tree(1), tree(2)℄), tree(6, [tree(7)℄)℄))

{1: (3, (5, ())), 2: (3, (5, ())), 7: (6, (5, ()))}

"""

p = {}

def gather(______________________________________, ______________________________________):

if is_leaf(u):

_________________________________________________________________________________

for b in bran
hes(u):

_________________________________________________________________________________

_________________________________________________________________________________________

return p

1 2 7

3 6

5

(b) (4 pt) Implement Path, a 
lass whose 
onstru
tor takes a tree t 
onstru
ted by tree and a leaf_label.

Assume all leaf labels of t are unique. When a Path is printed, labels in the path from the root to the leaf of

t with label leaf_label are displayed, separated by dashes. Assume pile is implemented 
orre
tly.


lass Path:

"""A path through a tree from the root to a leaf, identified by its leaf label.

>>> a = tree(5, [tree(3, [tree(1), tree(2)℄), tree(6, [tree(7)℄)℄)

>>> print(Path(a, 7), Path(a, 2))

5-6-7 5-3-2

"""

def __init__(self, t, leaf_label):

self.pile, self.end = pile(t), leaf_label

def __str__(self):

path, s = ___________________________________ , _____________________________________

while path:

path, s = _________________________________ , ___________________________________

return s

1 2 7

3 6

5


