
CS 61A Structure and Interpretation of Computer Programs
Summer 2016 Midterm Solutions

INSTRUCTIONS

• You have 2 hours and 50 minutes to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one 8.5” × 11” cheat sheet
of your own creation.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

Instructional account (cs61a-_)

BearFacts email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

http://berkeley.edu

2

1. (6 points) Olympic Games

(a) (4 pt) For each of the statements below, write the output displayed by the interactive Python interpreter
when the statement is executed. The output may have multiple lines. No answer requires more than four
lines. The first two have been provided as examples.

Assume that you have started python3 and executed the following statements:

gold = [0, 1]

def go(dream , team):

print(‘Steps to success:’)

def medal(lion):

return dream(team , lion)

return medal

def win(big):

print(‘Eat vegetables.’)

return big[-1] + big[-2]

def get(it , done):

do = it

while done < 2:

print("Don’t cheat!")

do, done = do + [win(do)], done + 1

return do

>>> print(4, 5) + 1 >>> riooo = go(get , gold)

4 5 Steps to success:

Error

>>> gold[-2] >>> usa = riooo (0)

0 Don’t cheat!

Eat vegetables.

Don’t cheat!

Eat vegetables.

>>> win(gold) >>> usa

Eat vegetables. [0, 1, 1, 2]

1

(b) (2 pt) What would be the return value of riooo(-2), after evaluating the expressions above?

[0, 1, 1, 2, 3, 5]

Name: 3

2. (6 points) The Name Game

Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

Globaldef person(name, age):
 def brain(ask):
 if ask == 'name':
 return name
 elif ask == 'age':
 return age
 return brain

def name(guy):
 return guy('name')

def age(gal):
 return gal('age')

my_name, my_age = 'Marv', 21
marv = person(my_name, my_age)
dan = person('Dan', age(marv) + 7)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

name

age

my_name

my_age

person func person(name, age) [parent=Global]

f1: _________ [parent=________]

Return Value

f2: _________ [parent=________]

Return Value

f3: _________ [parent=________]

Return Value

f4: _________ [parent=________]

Return Value

marv

dan

func name(guy) [parent=Global]

func age(gal) [parent=Global]

'Marv'

21

func brain(ask) [parent=f1]

func brain(ask) [parent=f4]

person Global

name

age

'Marv'

21

brain

age Global

gal

21

brain f1

ask 'age'

21

person Global

'Dan'name

age

brain

28

4

3. (3 points) High Scores

Write expressions involving the list lst that evaluate to the following values. Your expressions must use lst.
For the second and third lines, you must use a list comprehension.

>>> lst = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]

>>> len(lst)

5

>>> [[11 - x, 11 - y] for x, y in lst]

[[10, 9], [8, 7], [6, 5], [4, 3], [2, 1]]

>>> [2 * x for x in lst[0]]

[2, 4]

4. (4 points) Kerbal Space Program

Define the function is sorted that takes in a non-negative integer n and returns True if the digits of n are in
non-increasing order from left to right, and False otherwise. See the doctests for details.

You may only use the lines provided. You may not use any Python built-in sorting functions.

def is_sorted(n):

""" Returns whether the digits in n are in non -increasing order

from left to right.

>>> is_sorted (4)

True

>>> is_sorted (55555)

True

>>> is_sorted (9876543210)

True

>>> is_sorted (9087654321)

False

"""

if n < 10:

return True

elif n % 10 > (n // 10) % 10:

return False

else:

return is_sorted(n // 10)

Name: 5

5. (6 points) Katamari

(a) (4 pt) Define the function aggregate that takes in a two-argument function fn, a sequence seq, and a predicate
function pred and returns the result of using fn to combine the elements in seq for which pred returns True.
See the doctests for details. You may assume fn is commutative and never returns None.

You may only use the lines provided. You may not need to fill all the lines. You may not use
an import statement.

def aggregate(fn , seq , pred):

""" Aggregates using fn the elements in seq that satisfy pred.

>>> def is_even(x):

... return x % 2 == 0

>>> def sum_plus_one(x, y):

... return x + y + 1

>>> aggregate(sum_plus_one , [2, 4, 6], is_even) # (2 + 4 + 1) + 6 + 1

14

>>> # If no elements satisfy pred , return None

>>> aggregate(sum_plus_one , [1, 3, 5, 7, 9], is_even)

>>> # If only one element satisfies pred , return that element

>>> aggregate(sum_plus_one , [1, 2, 3], is_even)

2

"""

result = None

for elem in seq:

if pred(elem):

if result == None:

result = elem

else:

result = fn(result , elem)

return result

(b) (2 pt) Use the aggregate function above, which you can assume works correctly, to define the fact function
that returns the factorial of non-negative integers. Use only one line of code. If you need more space,
you can continue your line of code on the second blank. The add and mul functions, which may be
useful, have been imported for you.

Hint: You may need the ternary operator <expr1> if <cond> else <expr2>.

>>> from operator import add, mul

>>> fact = lambda n: aggregate(mul, range(1, n+1), lambda x: True) if n > 0 else 1

>>> fact(0)

1

>>> fact(5)

120

6

6. (6 points) Legend of Zelda

This question uses the following linked list data abstraction. We have provided an example linked list.

>>> empty = ‘empty’ >>> link(1, link(2, link (3)))

>>> def link(first , rest=empty):

... return [first , rest]

...

>>> def first(lnk):

... return lnk[0]

...

>>> def rest(lnk):

... return lnk[1]

Define the function linked sum that takes in a linked list of positive integers lnk and a non-negative integer
total and returns the number of combinations of elements in lnk that sum up to total. You may use each
element in lnk zero or more times. See the doctests for details. Do not violate abstraction barriers.

You may only use the lines provided. You may not need to fill all the lines.

def linked_sum(lnk , total):

""" Return the number of combinations of elements in lnk that

sum up to total.

>>> # Four combinations: 1 1 1 1 , 1 1 2 , 1 3 , 2 2

>>> linked_sum(link(1, link(2, link(3, link (5)))) , 4)

4

>>> linked_sum(link(2, link(3, link (5))), 1)

0

>>> # One combination: 2 3

>>> linked_sum(link(2, link(4, link (3))), 5)

1

"""

if total == 0:

return 1

elif lnk == empty or total < 0:

return 0

else:

with_first = linked_sum(lnk , total - first(lnk))

without_first = linked_sum(rest(lnk), total)

return with_first + without_first

Name: 7

7. (9 points) Game of Thrones

This question uses the following tree data abstraction. We have provided an example tree.

>>> def tree(entry , children =[]): >>> tree(3, [

... return [entry , children] tree(1),

... tree(2, [

>>> def entry(tree): tree(1), tree (1)

... return tree [0]])])

...

>>> def children(tree):

... return tree [1]

(a) (6 pt) Define the function track lineage that takes in a tree of strings family tree and a string name.
Assume that there is a unique node with entry name. track lineage returns a list with the entries of the
parent and grandparent of that node.1 If the node with entry name does not have a parent or grandparent,
return None for that element in the list. See the doctests for details. Do not violate abstraction barriers.

You may only use the lines provided. You may not need to fill all the lines.

def track_lineage(family_tree , name):

""" Return the entries of the parent and grandparent of

the node with entry name in family_tree.

>>> t = tree(‘Tytos ’, [

... tree(‘Tywin ’, [

... tree(‘Cersei ’), tree(‘Jaime ’), tree(‘Tyrion ’)

...]),

... tree(‘Kevan ’, [

... tree(‘Lancel ’), tree(‘Martyn ’), tree(‘Willem ’)

...])])

>>> track_lineage(t, ‘Cersei ’)

[‘Tywin ’, ‘Tytos ’]

>>> track_lineage(t, ‘Tywin ’)

[‘Tytos ’, None]

>>> track_lineage(t, ‘Tytos ’)

[None , None]

"""

def tracker(t, p, gp):

if name == entry(t):

return [p, gp]

for c in children(t):

res = tracker(c, entry(t), p)

if res:

return res

return tracker(family_tree , None , None)

1The grandparent of a node is the parent of the node’s parent.

8

(b) (3 pt) Assuming that track lineage works correctly, define the function are cousins that takes in a tree of
strings family tree and two strings name1 and name2 and returns True if the node with entry name1 and the
node with entry name2 are cousins in family tree. Assume that there are unique nodes with entries name1

and name2 in family tree. See the doctests for details.

Two nodes are cousins if they have the same grandparent but different parents.

You may only use the lines provided. You may not need to fill all the lines.

def are_cousins(family_tree , name1 , name2):

""" Return True if a node with entry name1 is a cousin of a node with

entry name2 in family_tree.

>>> are_cousins(t, ‘Kevan ’, ‘Tytos ’) # same tree as before

False

>>> are_cousins(t, ‘Cersei ’, ‘Lancel ’)

True

>>> are_cousins(t, ‘Jaime ’, ‘Lancel ’)

True

>>> are_cousins(t, ‘Jaime ’, ‘Tyrion ’)

False

"""

p1 , gp1 = track_lineage(family_tree , name1)

p2 , gp2 = track_lineage(family_tree , name2)

return p1 != p2 and gp1 is not None and gp1 == gp2

8. (0 points) Games of Berkeley

In the box below, write a positive integer. The student who writes the lowest unique integer will receive one
extra credit point. In other words, write the smallest positive integer that you think no one else will write.

