
CS 162 Fall 2017, 1st Exam September 28, 2017

 Page 1/12

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Fall 2017 Ion Stoica

First Midterm Exam
September 28, 2017

CS162 Operating Systems

Your Name:

Mitsuha Miyamizu

SID AND 162 Login
(e.g. "s042"):

13371337, s042

TA Name:

Taki Tachibana

Discussion Section
Time:

7-8PM, Wednesday

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to
answer as many questions as possible. The number in parentheses at the beginning of each
question indicates the number of points for that question. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there
is something in a question that you believe is open to interpretation, then please ask us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 22

2 22

3 20

4 21

5 15

TOTAL 100

CS 162 Fall 2017, 1st Exam September 28, 2017

 Page 2/12

P1 (22 points total) True/False and Why? CIRCLE YOUR ANSWER. For each
question: 1 point for true/false correct, 1 point for explanation. An explanation cannot
exceed 2 sentences.

a) The order in which you declare the members of struct	thread in Pintos
matters.

TRUE FALSE
Why?

The “magic” member has to be at the bottom of the struct (top memory-wise) in order to
function properly as an anti-corruption measure.

b) If one thread closes a file descriptor, then it will be closed for all threads in the

system, regardless of the process they are belonging to.
TRUE FALSE

Why?
It will be closed for only the threads in the same process. This will not affect threads in
another process.

c) The only way a thread can modify another thread’s stack variable is if the thread

is passed the address of that variable as an argument during creation.
TRUE FALSE

Why?
Threads in the same address space can access any memory address (example: a global
pointer to a local stack variable)

CS 162 Fall 2017, 1st Exam September 28, 2017

 Page 3/12

d) A binary semaphore (i.e., a semaphore which can only take values 0 and 1; if the
semaphore is 1 and you increment it, its value remains 1) is semantically
equivalent to a lock.

TRUE FALSE
Why?

Initialize semaphore to 1. Then P() is equivalent to acquire() and V() with release().

e) When you call fputs(string,	outfile), the content of “string” is immediately
written to “outfile” on disk.

TRUE FALSE
Why?

You need to call fflush() or close() to make sure “string” is written to “outfile” on disk.

f) The function pthread_yield() will always ensure that another thread gets to run.

TRUE FALSE
Why?

pthread_yield() puts the calling thread on the ready queue. The scheduler picks the next
thread to run from the ready queue and hence could pick the same thread to run again
(e.g., if there are no other ready threads)

g) Hardware interrupts can be used to implement locks.

TRUE FALSE
Why?

acquire() can be implemented by “disable interrupts” and release() by “enable interrupts”.

We also gave full points to the following two answers:

CS 162 Fall 2017, 1st Exam September 28, 2017

 Page 4/12

• FALSE: In user mode you cannot disable/enable interrupts.
• FALSE: disable interrupts cannot be used for multi-processors. Note that this is

not entirely correct (it’s just more expensive), but we gave benefit of doubt here.

h) When a thread is performing an I/O operation, such as read(), the thread is busy-
waiting until the operation completes.

TRUE FALSE
Why?

When waiting for an I/O operation to complete, the kernel puts the thread on the wait
queue. Upen I/O completion, the kernel moves the thread on the ready queue.

i) When a hardware interrupt occurs, the kernel enqueues the interrupt and serves it
when the current running thread completes.

TRUE FALSE
Why?

On an interrupt the current running thread is switched out and the interrupt serviced.

j) With a monitor, the program can call wait() in the critical section on a condition
variable associated to that monitor.

TRUE FALSE
Why?

When calling wait, the thread is put on the wait queue and the lock is released.

k) Context switching between two threads belonging to the same process is less
expensive than context switching between two threads belonging to two different
processes.

TRUE FALSE
Why?

In the later case, the kernel also needs to context switch the process address space state
(i.e., translation), and the context switch will also result in more cache misses.

CS 162 Fall 2017, 1st Exam September 28, 2017

 Page 5/12

P2 (22 points) Re: Zero – Starting Life in Another Process: Consider the following C
program. Assume that all system calls succeed when possible.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

void*	rem(void	*args)	{
		 printf("Blue:	%d\n",	*((int*)	args));
		 exit(0);
}
void*	ram(void	*args)	{
		 printf("Pink:	%d\n",	((int*)	args)[0]);
		 return	NULL;
}
int	main(void)	{
		 pid_t	pid;	pthread_t	pthread;	int	status;	//declaring	vars

	 int	fd	=	open("emilia.txt",	O_CREAT|O_TRUNC|O_WRONLY,	0666);
		 int	*subaru	=	(int*)	calloc(1,	sizeof(int));
		 printf("Original:	%d\n",	*subaru);	

		 if(pid	=	fork())	{
	 	 *subaru	=	1337;
	 	 pid	=	fork();
	 }
		 if(!pid)	{
								 pthread_create(&pthread,	NULL,	ram,	(void*)	subaru);
		 }	else	{
								 for(int	i	=	0;	i	<	2;	i++)
														 waitpid(-1,	&status,	0);
								 pthread_create(&pthread,	NULL,	rem,	(void*)	subaru);
		 }	pthread_join(pthread,	NULL);	

		 if(*subaru	==	1337)
								 dup2(fd,	fileno(stdout));
		 printf("All	done!\n");
		 return	0;
}

a) (4 points) Including the original process, how many processes are created?

Including the original thread, how many threads are created?
3 Processes and 6 Threads

CS 162 Fall 2017, 1st Exam September 28, 2017

 Page 6/12

b) (6 points) Provide all possible outputs in standard output. If there are multiple
possibilities, put each in its own box. You may not need all the boxes.

Original: 0
Pink: 1337
Pink: 0
All done!
Blue: 1337

Original: 0
Pink: 0
Pink: 1337
All done!
Blue: 1337

Original: 0
Pink: 0
All done!
Pink: 1337
Blue: 1337

Original: 0

c) (4 points) Provide all possible contents of emilia.txt. If there are multiple

possibilities, put each in its own box. You may not need all the boxes.

All done!

All done!

All done!

All done!

d) (4 points) Suppose we deleted line 28, how would the contents of emilia.txt

change (if they do)?
All done!
All done!
	

	

e) (4 points) What if, in addition to doing the change in part (d), we also move line
12 (where we open the file descriptor) between lines 19 and 20? What would
emilia.txt look like then?

All	done!	–or–		a	blank	file	

CS 162 Fall 2017, 1st Exam September 28, 2017

 Page 7/12

P3 (20 points) Synch Art Online – Ordinal Scale:

a) (8 points) [Spinlock using swap] In lectures, you learnt how to implement locks
using test & set. Your task here is to implement locks using the swap primitive.
To recapitulate, swap has the following semantics, and is executed atomically:

void	swap(int	*a,	int	*b)	{

int	temp	=	*a;
*a	=	*b;
*b	=	temp;

}

You have to implement Initialize, Acquire and Release for the lock operations. It is OK to
busy wait.

void	Initialize(int*	lock)	{	

*lock	=	0;
}	
	
void	Acquire(int*	lock)	{	

int	l	=	1;
do	{

swap(&l,	lock);
}	while	(l	==	1);
//	Or
//	while(l	==	1)	{
//						swap(&l,	lock);	
//	}	

}	
	
void	Release(int*	lock)	{	

*lock	=	0;
}	

Notes:

- We gave full credit if 0/1 were replaced by any other integer, as long as they were consistent.
- We gave full credit if lock was initialized or released using swap.
- We gave partial credit for Acquire if it was close to either of the correct solutions.

CS 162 Fall 2017, 1st Exam September 28, 2017

 Page 8/12

b) (8 points) [Sleeping Barber Problem] A barber shop has one barber chair, and a
waiting room with N chairs. The barber goes to sleep if there are no customers. If
a customer arrives, and the barber chair along with all N chairs in the waiting
room are occupied, he leaves the shop. Otherwise, the customer sits on the
waiting room chair and waits. If the barber is asleep in his chair, the customer
wakes up the barber.

Consider that the barber and each of the customers are independent, concurrent
threads. Fill in the following blanks to ensure that the barber and the customers
are synchronized and deadlock free. Assume each semaphore has P() and V()
functions available as semaphore.P() and semaphore.V():

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Semaphore	barberReady	=	0;																						
Semaphore	accessWaitRoomSeats	=	1;	
Semaphore	customerReady	=	0;	
int	numberOfFreeWaitRoomSeats	=	N;	
	
void	Barber	()	{	
	while	(true)	{	
			customerReady.P();	
			accessWaitRoomSeats.P();	
			numberOfFreeWaitRoomSeats	+=	1;	
			accessWaitRoomSeats.V();	
			cutHair();	 	 	 //	Cut	customer’s	hair	
			barberReady.V();	
	}	
}	
	
void	Customer	()	{	
	accessWaitRoomSeats.P();	
	if	(numberOfFreeWaitRoomSeats	>	0)	{	
			numberOfFreeWRSeats	-=	1;	
			accessWaitRoomSeats.V();	
			customerReady.V();	
			barberReady.P();	
			getHairCut();		//	Customer	gets	haircut	:)	
	}	else	{	
			accessWaitRoomSeats.V();	
			leaveWithoutHaircut();	 	 //	No	haircut	:(
	}	
}	

Notes:

- We gave partial credit for (to varying extents, depending on the situation) if you had
mixed up the P()/V() calls or customerReady/barberReady semaphores.

- We gave full credit for accessWaitRoomSeats.P() and accessWaitRoomSeats.V() if they
were before and after the numberOfFreeWaitRoomSeats access/modification,
respectively.

CS 162 Fall 2017, 1st Exam September 28, 2017

 Page 9/12

c) (4 points) Describe a scenario where a customer can get starved, i.e., get stuck
waiting in the waiting room forever. Briefly outline a way to fix this.

A customer may get starved when he is waiting on barberReady.P() and other
customers keep coming in and getting served before him/her.

One possible solution is to maintain a queue of waiting customers, and grant them
access to getHairCut() in FIFO order.	

CS 162 Fall 2017, 1st Exam September 28, 2017

 Page 10/12

P4 (21 points total) Networking is an Important Skill!: The code below implements a
server that handles multiple connections. (We ignore disconnections and other socket
errors, as well as fork() failure. You could also ignore those failures when answering the
following questions.)

0		int	pid	=	getpid()	
1		bind(sockfd,	(struct	sockaddr	*)	&serv_addr,	sizeof(serv_addr))	
2		listen(sockfd,5);	
3		while	(1)	{	
4				newsockfd	=	accept(sockfd,	(struct	sockaddr	*)	&cli_addr,	
&clilen);	
5				if	(fork()	==	0)	{	
6							//	do	some	communication;	
7							exit(0);	
8				}	else	{	
9	 		if	(some	condition)	break;	
10			}	
11	}	

a) (6 points) [Close Sockets] Insert code to close sockets whenever appropriate. You
might need to insert multiple close() statements. You should close a socket as
soon as it’s not needed. You will not receive point for a delayed close().

Example: After line 1: close(sockfd) # note this example might be incorrect

After line 5: close(sockfd)
After line 6: close(newsockfd)
After line 8: close(newsockfd)
After line 11: close(sockfd) or do this at line9, before break;

b) (6 points) [Send] Assume we permit at most 3 open connections from clients, at
ANY time. One way to do this is to stop accepting new connections when there
are already 3. But this leaves a waiting client in the dark. We want to inform the
client that “system is overloaded”. To do that, when the 3rd connection is
accepted, we tell the client that “system is overloaded; reconnect later.” and then
immediately close that connection afterwards. (In this way, we have only 2
working connections but this is fine). Fill in the blanks on the following page to
complete this code. You don’t need to close sockets for this problem.

	 	

CS 162 Fall 2017, 1st Exam September 28, 2017

 Page 11/12

int	count	=	0;	
int	status;	
while	(1)	{	

while	(count	>	2)	{	
if	(wait(&status)	>	0)	

count--;	
}	
newsockfd	=	accept(sockfd,	(struct	sockaddr	*)	&cli_addr,	

&clilen);	
count++;	

	 #	An	alternative	solution	could	close	socket	here	
if	(fork()	==	0)	{	
	 if	(count	==	3)	{	

							 	 send(newsockfd	,	“system	is	overloaded;	reconnect	
later.”	,	38	,	0);	#	other	socket	API	or	message	also	work	
	 	 }	else	{	

	 	 	 #	do	some	communication	
	 	 }	
	 	 exit(0);	

}	else	{	
	 if	(some	condition)	break;	
}	

}	
	
c) (6 points) [Read] Back to the original code. Now assume the parent process with

the listening socket should be terminated whenever ANY of the open connections
receive a character 'q' from clients. (The existing open connections should still be
working.) We expand line #6 to do that. Fill in the blanks to complete this code.

char	reqbuf[MAXREQ];	
while	(1)	{	

#	an	alternative	should	could	read	1	char	at	a	time	
n	=	read(newsockfd,	reqbuf,	MAXREQ);	
if	(i	=	0;	i	<	n;	i++)	{	
					if(reqbuf[i]	==	‘q’)	{	
									kill(pid,SIGHUP);	
					}	

						}	
}	

d) (3 points) What happens to the child processes when the listening process in c) is

terminated? Are the children going to be terminated as well? If yes, provide a
design so that child processes will be not terminated.

No. The child processes will keep running.

CS 162 Fall 2017, 1st Exam September 28, 2017

 Page 12/12

P5 (15 points) Back to Our Scheduled Programming: Consider three processes P1, P2,
and P3, being scheduled by a preemptive scheduler. Assume each process has a single
kernel thread, and the context switching between two processes is 100 usec, while the
time slice is 10ms.

a) (5 points) Assume that none of the processes perform I/O operations or waits for a
signal, i.e., the kernel context switch a process only when its time slice expires
(using the timer interrupt). What is the scheduling overhead of the system, i.e., the
total context switching time over the total time the CPU is busy?

The scheduler runs a process for 10ms, and then spends 100usec to switch to
another process. Thus, the overhead is:

100usec/(10ms + 100usec) = 0.99%

b) (5 points) Assume that one process is performing an I/O every 1 ms after it is
scheduled, and the scheduler is using round-robin. What is the scheduling
overhead of the system now?

300usec/(10ms + 10ms + 1ms + 300usec) ~= 1.4%

c) (5 points) Now assume that all processes share a critical section that takes much
longer than a times slice, and they use busy-waiting to implement mutual
exclusion. Assume that at any given time there is one process in the critical
section, and the scheduler is using the round-robin discipline. What is the
percentage of time the CPU is doing useful work (the only useful work in this
case is performed in the critical section.)

For every 10ms of useful work performed by the process in the critical section,
the other two processes waste 10ms busy waiting when they are scheduled. Thus,
the percentage of useful work is

10ms/30ms = 33%

	

	

