Name: Pramod / Siva

Student ID #:

University of California at Berkeley Electrical Engineering and Computer Science EE105 Midterm Examination #1 March 5, 2014 (50 minutes)

CLOSED BOOK; Two standard 8.5" x 11" sheet of notes (both sides) permitted

IMPORTANT NOTES

- Read each problem completely and thoroughly before beginning to work on it
- Summarize all your answers in the boxes provided on these exam sheets
- Show your work in the space provided so we can check your work and scan for partial credit
- Remember to put your name in the space above

Problem #	Points Possible	Score
1	20	
2	40	
3	40	
Total	100	

1.	True/False	questions	(20	points))
----	------------	-----------	-----	---------	---

For each of the following statements, state "T" for true or "F" for false. No explanation necessary. Correct answers are worth +2 point and incorrect answers yield -2 point. 0 points for unanswered questions. Your minimum total score on this problem is zero points.

(a) The input resistance of a common-base stage depends on the load resistance, R _L . (Include r _o)	
(b) Assuming a constant current source load, the voltage gain, A _V , of a cascode common-emitter amplifier is twice as large as that of a common-emitter amplifier without cascode.	F
(c) The Early voltage of a BJT can be increased by increasing the doping density in the base region.	T
(d) In an abrupt-junction pn diode, the depletion region is greater on the more lightly doped side.	
(e) In an abrupt-junction pn diode, the potential drop is greater on the more lightly doped side.	
(f) In a common-emitter amplifier with a fixed load resistance, R_L , properly biased for maximum signal swing at the output, the voltage gain is doubled as the power supply voltage, V_{CC} , is doubled. Assume $V_{CE}(sat) = 0V$	
(g) Cascoding can be used to increase the small-signal output resistance of a common-emitter stage.	
(h) In a common-collector amplifier with an ideal current source connected from the emitter to ground, the small-signal input resistance is r_{π} .	
(i) The combination of a degenerated common-emitter amplifier cascaded with a common-collector amplifier is suitable for current amplification.	
(j) Oski got his/her undergraduate degree at Stanford.	F

2 @
$$\beta_1 = \beta_2 = \infty \Rightarrow \text{No base current}$$

$$I = I_{s}(e^{V_{BE_{i}}V_{T}} - 1)$$

$$I = I_{s}(e^{V_{BE_{i}}V_{T}} - 1)$$

$$I_{o} = I_{s}(e^{V_{BE_{i}} - I_{R}})/V_{T} - 1)$$

$$V_{ge_{i}} = V_{ge_{2}} = V_{ge_{1}} - I_{R}$$

Phygging in values
$$I = ImA I_s = 10^{-17}$$

$$R = 1000$$

$$V_{SEI} = V_{T} ln \left(\frac{I}{I_s} + 1 \right) = 0.8252 \text{ V}$$

$$V_{SE2} = 0.7252 \text{ V}$$

$$I_0 = 20.11 \mu A$$

when B = 100 > IB, \$0

$$I_{c} + I_{B_{1}} = I$$

$$I_{c} = I - I_{B_{1}} = I - I_{c}$$

$$I_{c} \left(1 + \frac{1}{\beta}\right) = I$$

$$I_{c} = \frac{I}{(1 + \frac{1}{\beta})} = I$$

$$I_{c} = \frac{I}{(1 + \frac{1}{\beta})} = 0.9901 \text{ mA}$$

$$V_{BEI} = V_{T} ln \left(\frac{I_{C}}{I_{S}} + 1 \right) = 0.82499 V$$

2. DC Bias Circuits (40 points). In the circuit below, all devices operate in the forward-active region (FAR). In all cases, assume $I_{S1} = I_{S2} = 10^{-17}$ A, I = 1 mA and $R = 100 \Omega$.

(a) Find the value of I_0 with $\beta_1 = \beta_2 = \infty$.

$$V_{BE2} = V_{BE1} - I_{c}R$$

$$= 0.82499 - 0.9901 \times 10^{-3} \times 100$$

$$= 0.82499 - 0.09901 = 0.72598 V$$

$$I_{0} = I_{s} (e^{V_{BE2}/V_{7}} - 1)$$

$$I_{0} = 20.70 \mu A$$

$$2 \bigcirc \beta_2 = 100 \Rightarrow I_{32} \neq 0$$

$$I = I_{32} + I_{c}$$

$$I_{32} = \frac{I_{o}}{\beta}$$

(a)
$$I_O =$$

$$I = I_{0} + I_{C} \longrightarrow 0$$

$$I_{C} = I_{S} (e^{V_{BFI}/V_{T}} - 1) \longrightarrow 0$$

$$V_{BFI} = V_{BF2} + I_{R}$$

$$V_{BFI} = V_{T} \ln \left(\frac{I_{0}}{I_{S}} + 1\right) + I_{R} \longrightarrow 3$$

$$I - \frac{I_{0}}{B} = I_{S} \left(e^{I_{R}/V_{T}} \cdot e^{I_{R}\left(\frac{I_{0}}{I_{S}} + 1\right)} - 1\right)$$

$$= I - \frac{I_{0}}{B} = I_{S} \left(e^{I_{R}/V_{T}} \cdot e^{I_{R}/V_{T}} - 1\right)$$

$$= I_{0} = I_{0} \left(e^{I_{R}/V_{T}} \cdot e^{I_{R}/V_{T}} - 1\right)$$

$$= I_{0} = I_{0} \left(e^{I_{R}/V_{T}} \cdot e^{I_{R}/V_{T}} - 1\right)$$

$$= I_{0} = I_{0} \left(e^{I_{R}/V_{T}} \cdot e^{I_{R}/V_{T}} - 1\right)$$

$$= I_{0} = I_{0} \left(e^{I_{R}/V_{T}} \cdot e^{I_{R}/V_{T}} - 1\right)$$

$$= I_{0} = I_{0} \left(e^{I_{R}/V_{T}} \cdot e^{I_{R}/V_{T}} - 1\right)$$

$$= I_{0} = I_{0} \left(e^{I_{R}/V_{T}} - 1\right)$$

$$\frac{I - I_s e}{I_s + I_s} = I_o$$

$$\frac{I_o = 20.112 \mu A}{I_b + e^{IR/V_T}}$$

3. (40 points) Small-signal gain calculations. In the circuits below, all devices operate in the forward-active region (FAR). In both cases, assume for DC $V_{BE1} = V_{BE2}$, $\beta_1 = \beta_2 = \infty$ and $V_{A1} = V_{A2} = \infty$.

Derive expressions for the small-signal voltage gains, $A_V = V_O/V_i$ and compute the value of the ratio of the two gains, $A_V(b)/A_V(a)$.

(b) For Case 2

Let us Consider

only TII2 for simplicity.

Since TIZ -> 00

Ube, - 0 Since Ubez is finite

$$\frac{A_{vb}}{A_{vb}} = 1$$