Chemical Engineering 150A

Midterm #1

(155) 1. In the system below, a free liquid jet flows downwards at a known volumetric flow rate Q_o against a suspended inverted solid cone of mass *m*, as shown in Figure 1. A suspending force F_o is applied to the cone to keep it stationary, as illustrated. The liquid deflects around the cone (dimensions are given) with a *local x*-velocity profile given by

$$v_x(y) = a \frac{\delta^2}{\mu} \left[1 - \left(\frac{y}{\delta}\right)^2 \right]$$

where δ is the thickness of the fluid layer, μ is viscosity of the liquid, and $a = \rho g \cos \beta / 2 (\rho)$ is the liquid density and g is the acceleration of gravity).

Figure 1. A Free Liquid Jet Impinging on a Suspended Inverted Cone

Chemical Engineering 150A

(40) a. Since the circumference of the cone increasing as the fluid travels along its length *s*, the the liquid film occupies larger cross sectional areas. Hence the film thickness δ decreases with increasing *x*. Perform a mass balance on the fluid to find an expression for the film thickness, δ , as a function of *x* and the parameters as a function of *x*, $Q_o \rho$, β , *g*, and μ . The volumetric flow of liquid at any point *x* along the cone can be written approximately as

$$Q = 2\pi x \delta \sin \beta \left\langle v_x \right\rangle$$

where $\langle v_x \rangle$ is the average *x*-velocity at position *x*.

- (15) b. What role does pressure play in keeping the cone stationary?
- (15) c. Which components of the shear stress tensor act on the cone (i.e., which of the various τ_{ii})?
- (25) d. Find the expression for the vertical component of the drag force exerted by the liquid on the cone in terms of *x*, $Q_o \rho$, β , *g*, and μ . Please note that because the liquid film thickness varies in the *x*-direction along the cone, so does the shear stress.
- (40) e. Perform a vertical momentum balance on the cone to establish an expression for the force F_o in terms of the parameters $Q_o \rho$, β , g, and μ .
- (10) f. What will happen if F_o is held constant and the volumetric flow rate of the jet, Q_o , is increased?
- (10) g. What happens to the cone if it tips slightly off axis?