
Midterm #2, Physics 137A, Spring 2017. Write your responses below or on extra pages. Show your
work, and take care to explain what you are doing; partial credit will be given for incomplete answers that
demonstrate some conceptual understanding. Cross out or erase parts of the problem you wish the grader
to ignore. Some equations of potential relevance are given on the back page.

Problem 1: (15 pts)

Consider a spin 1/2 particle in the spin state (written in the basis of Ŝz eigenstates)

~χ = A

(
eiδ

1

)
(where A and δ are real constants) (1)

1a) Determine the constant A needed to normalize ~χ

ANSWER: The normalization requirement is

~χ†~χ = |a|2 + |b|2 = 1 (2)

where a and b are the two complex coefficients of the spinor. In this example

(Aeiδ)(A∗e−iδ) +AA∗ = 1→ |A|2 + |A|2 = 1→ |A| = 1/
√

2 (3)

There is an arbitrary overall complex phase that could be added to A, but since this makes no difference we
set it to zero and choose A real.

1b) What is the probability that a measurement of Ŝz for the particle returns spin up in the z-direction?

ANSWER: This and the next part of this problem are a specific case of Problem 2 of HW#6.The probability
of finding spin up in z-direction is

P (↑z) = | 〈↑z|χ〉 |2 (4)

Where the state represented by ~χ written in its abstract form is

|χ〉 =
eiδ√

2
|↑z〉+

1√
2
|↓z〉 (5)

The orthonormality of the basis vectors means

〈↑z|χ〉 =
eiδ√

2
(6)

P (↑z) = | 〈↑z|χ〉 |2 =

(
e−iδ√

2

)(
eiδ√

2

)
=

1

2
(7)

Since ~χ is the representation in the Sz basis, we could have just written the answer down immediately as
the absolute value squared of the first component of ~χ

1c) What is the probability that a measurement of Ŝx for the particle returns spin up in the x-direction?

ANSWER: The probability of finding spin up in x-direction is

P (↑x) = | 〈↑x|χ〉 |2 (8)

Where |↑x〉 can be written in terms of the Sz basis vectors as

|↑x〉 =
1√
2
|↑z〉+

1√
2
|↓z〉 ↔ ~χ↑x =

1√
2

(
1
1

)
(9)
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(If this solution for the spin up eigenstate of Sx was not known, it can be determined in the ordinary way
by solving for the eigenvectors of the Sx matrix given on the equation sheet). Then

〈↑x|χ〉 =

(
1√
2
〈↑z|+

1√
2
〈↓z|

)(
eiδ√

2
|↑z〉+

1√
2
|↓z〉

)
=
eiδ

2
+

1

2
(10)

And so

P (↑x) = | 〈↑x|χ〉 |2 =

(
e−iδ

2
+

1

2

)(
eiδ

2
+

1

2

)
=

1

4

(
1 + eiδ + e−iδ + 1

)
=

1

4
(2 + 2 cos δ) (11)

So

P (↑x) =
1

2
(1 + cos δ) (12)

as a sanity check, we look at obvious the limits. For δ = 0 we get P = 1, which makes sense since then the
state ~x is just the spin-up in x eigenstate. For δ = π we get P = 0, which makes sense since then the state
|x〉 is just the spin-down in x eigenstate.

An alternative (but mathematically equivalent) approach to solving this problem is to write the spinor
~χ in the Sx basis by applying a similarity transformation

~χSx = S~χ where S =
1√
2

(
1 1
1 −1

)
(13)

The similarity matrix S is just the one made up of the eigenvectors of Sx written in the Sz basis (as done in
HW#5). The spinor in the Sx basis is then

~χSx =
1√
2

(
1 1
1 −1

)
1√
2

(
eiδ

1

)
=

1

2

(
eiδ + 1
eiδ − 1

)
(14)

And since the spinor is now represented in the Sz basis, the answer is just the absolute value squared of the
first component.

1d) For a state of the form of Eq. 1, use the non-commutation of Ŝz and Ŝx to derive an uncertainty
relation written in the form

σSzσSx ≥ f(δ) (15)

where f(δ) is a function of δ and fundamental constants. The quantities σSz and σSx here are the uncer-
tainties (i.e., standard deviations) in measurements of Ŝz and Ŝx (they’re not the Pauli spin matrices!)

ANSWER: The generalized uncertainty relation (given on the back equation sheet) is

σ2
Aσ

2
B ≥

(
1

2i
〈[Â, B̂]〉

)2

(16)

In this case, the operators are Ŝz and Ŝx. We know the commutation relations for the spin operators are

[Ŝz, Ŝz] = ih̄Ŝy (17)

(or this relation could be directly calculated from the spin matrices on the equation sheet). The uncertainty
relation is then

σ2
Szσ

2
Sx ≥

(
1

2i
ih̄〈Ŝy〉

)2

(18)

We need the expectation value of Ŝy for this state, which can be calculated using the spin matrix

〈Ŝy〉 = ~χ†Sy~χ =
(

1√
2
e−iδ 1√

2

) h̄
2

(
0 −i
i 0

)
1√
2

(
eiδ

1

)
(19)
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〈Ŝy〉 =
h̄

4

(
e−iδ 1

)( −i
ieiδ

)
=
h̄

4

(
−ie−iδ + ieiδ

)
= − h̄

4
(2 sin δ) = − h̄

2
sin δ (20)

So plugging this in above gives

σ2
Szσ

2
Sx ≥

(
− h̄

2

h̄

2
sin δ

)2

=
h̄4

16
sin2 δ (21)

Taking the square root

σSzσSx ≥
h̄2

4
| sin δ| (22)
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Problem 2: (12 pts)

Let us denote the normalized energy eigenstates of the infinite square well as |1〉 , |2〉 , |3〉 , ... |n〉. Consider
the operator

Q̂ = |1〉 〈2| (23)

2a) Show that the value1 〈Q〉 = 0 for any of the energy eigenstates |n〉.

ANSWER: The quantity requested is

〈Q〉 =
〈
n
∣∣∣Q̂n〉 = 〈n|1〉 〈2|n〉 (24)

By the orthogonality of the eigenstates, 〈n|1〉 = 0 unless |n〉 = |1〉, but in this case 〈2|n〉 = 〈2|1〉 = 0, so
〈Q〉 = 0 for any state |n〉.

2b) Find the value 〈Q〉 for the state |α〉 = 1√
2
i |1〉+ 1√

2
|2〉

ANSWER: The quantity requested

〈Q〉 =

(
1√
2

(−i) 〈1|+ 1√
2
〈2|
)
|1〉 〈2|

(
1√
2
i |1〉+

1√
2
|2〉
)

(25)

where we were careful to complex conjugate the i when taking the corresponding bra of the ket. The result
is, using the orthogonality of the eigenstates

〈Q〉 =
−i√

2

1√
2

=
−i
2

(26)

Since Q̂ is not Hermitian, there is no requirement that this value be real (as alluded to in the footnote).

2c) Does Q̂ commute with the hamiltonian Ĥ? Based on this result determine whether 〈Q〉 remains
constant over time.

ANSWER: We write the commutator

[Ĥ, Q̂] = Ĥ |1〉 〈2| − |1〉 〈2| Ĥ (27)

This can be calculated abstractly by using the fact that |1〉 and |2〉 are eigenstates of Ĥ with eigenvalues E1

and E2, respectively. We use the fact that Ĥ is hermitian to move it over onto the 〈2|

[Ĥ, Q̂] = Ĥ |1〉 〈2| − |1〉
〈
Ĥ†2

∣∣∣ = Ĥ |1〉 〈2| − |1〉
〈
Ĥ2
∣∣∣ = E1 |1〉 〈2| − E2 |1〉 〈2| (28)

hence
[Ĥ, Q̂] = (E1 − E2) |1〉 〈2| 6= 0 (29)

If you are uncomfortable with the moving of Ĥ into the 〈2| term, you can instead apply the commutator to
a general state written as a sum of eigenstates

[Ĥ, Q̂] |α〉 =
(
Ĥ |1〉 〈2| − |1〉 〈2| Ĥ

)∑
n

cn |n〉 (30)

which is seen to be
= (E1 |1〉 〈2| − |1〉 〈2|E2)

∑
n

cn |n〉 = (E1 − E2) |1〉 〈2| |α〉 (31)

So the commutator again is not zero.

1Note that if Q̂ is not Hermitian, its eigenvalues are not guaranteed to be real, and so the quantity 〈Q〉 =
〈
α
∣∣∣Q̂α〉 for some

state |α〉 may not actually represent the average value of measurements of some real physical observable.
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An even simpler way to do the problem would be to just look at the commutator on the specific state
|2〉. Then we see

[Ĥ, Q̂] |2〉 = Ĥ |1〉 〈2| |2〉 − |1〉 〈2| Ĥ |2〉 = |1〉 (E1 − E2) 6= 0 (32)

This is a specific counter-example to the claim that Ĥ and Q̂ commute.
You derived in HW#7 (and also in class) that the time evolution of an expectation value is related to

the expectation value of the commutator by

∂

∂t
〈Q〉 =

i

h̄

〈
[Ĥ, Q̂]

〉
(33)

(which uses the fact that Q̂ does not change with time). Since Ĥ and Q̂ don’t commute, we see that the 〈Q〉
is not a constant with time in general (unless it happens to be zero).

2d) Is the operator Q̂ unitary? Demonstrate why or why not (there is more than one way to do so).

ANSWER: A unitary operator preserves the lengths of vectors. But we have from part 2a) that

Q̂ |n〉 = |∅〉 where |∅〉 is the null vector (34)

for any eigenstate. The length of Q̂ |n〉 is zero, while the length of |n〉 is not (its length is 1 assuming the
eigenstates are normalized) therefore Q̂ is not unitary.

More directly, the Hermitian conjugate of Q̂ is

Q̂† = |2〉 〈1| (35)

And so
Q̂†Q̂ = |2〉 〈1| |1〉 〈2| = |2〉 〈2| 6= Î =

∑
n

|n〉 〈n| (36)

Where in the last step we conclude that the operator is not equal to the identity operator since it includes
only one term in the sum giving the resolution of the identity. Since Q̂† 6= Q̂−1 we see Q̂ is not unitary.

Note that all of the parts of this problem become rather straightforward if you realize that the operator Q̂
can be written as a matrix in the basis of energy eigenvectors (as was done in HW#7 part 4c). The action
of Q̂ is to just turn state |2〉 into state |1〉 so the matrix must be

Q̂ =

 0 1 0 .
0 0 0 .
. . . .

 (37)

It is then directly clear that Q̂† 6= Q̂−1 (so the operator is not unitary). One can can also calculate expectation
values directly from the matrix multiplication, and can directly compute the commutation with the Ĥ as
matrix multiplications (in this representation Ĥ is just diagonal with eigenvalues along the diagonal).
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Problem 3: (18 pts)

Scientists have just discovered an amazing new quantum property of particles, called
“animalness”. When measured, a particle is observed to be either a “duck” or a
“rabbit”. The “animalness” is associated with a Hermitian operator Â with eigen-
vectors |D〉 (for duck) and |R〉 (for rabbit) with eigenvalues λD = +1 and λR = −1
respectively. In the |D〉 , |R〉 basis the Â operator is represented by

Â =

(
1 0
0 −1

)
(38)

A particle is put into a device where the Hamiltonian (written in the |D〉 , |R〉 basis) is

Ĥ = e

(
1 1
1 1

)
(where e is a constant) (39)

3a) What are the possible values of energy that can be observed?

ANSWER: We want to calculate the eigenvalues of Ĥ, similar to the calculations we have done for other
2x2 matrices on the homework. The characteristic equation is

det|Ĥ − λÎ| = det

(
e− λ e
e e− λ

)
= 0 (40)

(e− λ)(e− λ)− e2 = 0→ e2 − 2eλ+ λ2 − e2 = 0 (41)

λ(λ− 2e) = 0→ λ1 = 0 or λ2 = 2e (42)

3b) A particle with the above Hamiltonian is initially a duck (i.e., in the |D〉 state). What is the uncertainty
in its energy?

ANSWER: In this basis the state |D〉 is just represented by

(
1
0

)
so we have

〈E〉 =
(

1 0
)
e

(
1 1
1 1

)(
1
0

)
= e

(
1 0

)( 1
1

)
= e (43)

and 〈
E2
〉

=
(

1 0
)
e

(
1 1
1 1

)
e

(
1 1
1 1

)(
1
0

)
=
(

1 0
)
e2

(
2 2
2 2

)(
1
0

)
= 2e2 (44)

So the uncertainty in energy is
σ2
E =

〈
E2
〉
− 〈E〉2 = 2e2 − e2 = e2 (45)

hence σE = e .

3c) We make a measurement and determine the energy of the particle. Calculate the probability that a
subsequent measurement of Â will find the particle to be a duck.

ANSWER: If we measure the energy, we collapse the state to one of the energy eigenvectors. We can
determine the representation of the eigenvectors in the |D〉 , |R〉 basis in the usual way

e

(
1 1
1 1

)(
a
b

)
= λ

(
a
b

)
(46)

which implies
e(a+ b) = λa (47)
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for λ1 = 0 this implies a = −b, while for λ2 = 2e we have a = b. Normalizing the two eigenvectors so that
|a|2 + |b|2 = 1 gives

~e1 =
1√
2

(
1
−1

)
~e2 =

1√
2

(
1
1

)
(48)

The probability of finding the particle to be a duck in the |D〉 , |R〉 basis is the absolute value squared of the
first component of the vector. The problem does not specify which energy is measured – and hence which
eigenvector we collapse to – but we see that it doesn’t matter. For both eigenvectors the probability of being

in the |D〉 state is 1/2

3d) We measure Â and find the particle to be a duck. We then let the system evolve for a time t and
measure Â again. Calculate the probability that we find the particle to be a rabbit (i.e., in the |R〉 state).

ANSWER: This is similar to problems 2 and 3 on HW#6. The eigenstates of the Hamiltonian are those
that evolve simply with time (by application of a complex phase). So we write the state |D〉 as a superposition
of energy eigenstates

|D〉 ↔
(

1
0

)
=

1√
2
~e1 +

1√
2
~e2 (49)

And since we know how the energy eigenvectors evolve we have the state at some time t as

~χ(t) =
1√
2
e−iE1t/h̄~e1 +

1√
2
e−iE2t/h̄~e2 (50)

so plugging in E1 = 0, E2 = 2e, and the expression for the eigenvectors gives

~χ(t) =
1

2

(
1
−1

)
+

1

2

(
e−2iet/h̄

e−2iet/h̄

)
=

1

2

(
e−2iet/h̄ + 1
e−2iet/h̄ − 1

)
(51)

The rabbit state is represented by

(
0
1

)
and so the probability of being observed a rabbit is the absolute

value squared of the second component of ~χ

P (R) =
1

2

(
e2iet/h̄ − 1

) 1

2

(
e−2iet/h̄ − 1

)
=

1

4

(
1− e−2iet/h̄ − e2iet/h̄ + 1

)
(52)

P (R) =
1

4
(2− 2 cos(2et/h̄)) =

1

2
(1− cos(2et/h̄)) (53)

and if we care to, we see the probability of being a duck is

P (D) =
1

2
(1 + cos(2et/h̄)) (54)

We sanity check that at t = 0 the probability of being a rabbit is zero, and the maximum value of P (R) is
1. The sum of being a duck or a rabbit is one at all times.
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Problem 4: (15 pts)

The lowering ladder operator of the harmonic oscillator â− is not Hermitian (and so does not correspond to
any observable) but we can still find eigenstates of the operator that obey

â− |α〉 = α |α〉 (55)

where |α〉 is a (normalized) eigenstate of â− and the associated eigenvalue α is some complex number. The
states |α〉 turn out to be quite physically interesting.

4a) Find the expectation value of x̂ for an eigenstate |α〉 in terms of α and other variables.

ANSWER: Recalling the use of ladder operators in HW#7 problems 3 and 4, we write the operator x̂ in
terms of ladder operators

x̂ = x0 (â+ + â−) where x0 =

√
h̄

2mω0
(56)

so the expectation value of x̂ is

〈x〉 〈α|x̂α〉 = x0 〈α|(â+ + â−)α〉 = x0 〈α|â+α〉+ x0 〈α|â−α〉 (57)

The second term can be evaluated since |α〉 is an eigenstate of â−

x0 〈α|â−α〉 = x0α 〈α|α〉 = x0α (58)

which uses the fact hat |α〉 is normalized. To deal with the first term involving the raising operator we note

that the Hermitian conjugate of â+ is â†+ = â−. Thus the term is

x0 〈α|â+α〉 = x0

〈
â†+α

∣∣∣α〉 = x0 〈â−α|α〉 = x0α
∗ 〈α|α〉 = x0α

∗ (59)

Note that since α is not necessarily real, we must complex conjugate the constant. This gives finally

〈x〉 = x0(α∗ + α) (60)

4b) Determine the uncertainty in position σx for |α〉.

ANSWER: To get the uncertainty we need to find
〈
x2
〉
. The operator is

x̂2 = x0(â+ + â−)x0(â+ + â−) = x2
0(â2

+ + â+â− + â−â+ + â2
−) (61)

The expectation value has four terms now. Three of them are〈
α
∣∣â2
−α
〉

= α2 (62)〈
α
∣∣â2

+α
〉

=
〈
â2
−α
∣∣α〉 = α∗2 (63)

〈α|â+â−α〉 = 〈â−α|â−α〉 = α∗α (64)

For the last term, we will need to use the commutation relation [â−, â+] = 1 which allows us to write
â−â+ = 1 + â+â−

〈α|â−â+α〉 = 〈α|α〉+ 〈α|â+â−α〉 = 1 + α∗α (65)

Putting it all together 〈
x2
〉

= x2
0(α2 + α∗2 + 2α∗α+ 1) (66)

so the uncertainty squared is

σ2
x =

〈
x2
〉
− 〈x〉2 = x2

0(α2 + α∗2 + 2α∗α+ 1)− x2
0(α2 + α∗2 + 2α∗α) = x2

0 (67)

and so σx = x0
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For the sake of time, I won’t ask you to calculate the uncertainty in momentum σp, but if you did you would
see that the |α〉 are special states that have the minimum possible uncertainty σxσp = h̄/2. We can express
these states (as we can any state) as a superposition of the energy eigenstates of the harmonic oscillator, |n〉

|α〉 =

∞∑
n=0

cn |n〉 (68)

4c) Derive an expression for the coefficients cn in terms of the coefficient c0 of the ground state (the
coefficient c0 itself can be determined using the normalization condition, which you needn’t bother to do).

ANSWER: We want to use the fact that |α〉 is an eigenstate of the lowering operator, which means

â−

∞∑
n=0

cn |n〉 = α

∞∑
n=0

cn |n〉 (69)

It may be easiest to see this by writing out terms explicitly

|α〉 = c0 |0〉+ c1 |1〉+ c2 |2〉+ c3 |3〉+ ... (70)

applying the lowering operator (its action is given on the back equation sheet) we find

â− |α〉 = c1 |0〉+ c2
√

2 |1〉+ c3
√

3 |2〉+ ... (71)

then the first equation is

c1 |0〉+ c2
√

2 |1〉+ c3
√

3 |2〉+ ... = α(c0 |0〉+ c1 |1〉+ c2 |2〉+ c3 |3〉 ...) (72)

Now to pick out the coefficients, we just apply the appropriate bra. For example, applying 〈0| to each side
gives

c1 = αc0 (73)

and applying 〈1| to each side gives

c2
√

2 = αc1 → c2 =
α√
2
c1 =

α2

√
2
c0 (74)

and applying 〈2| to each side gives

c3
√

3 = αc2 → c3 =
α√
3
c2 =

α3

√
3
√

2
c0 (75)

and we see the trend

cn =
αn√
n!
c0 (76)

To do this more generally, we can write the action of the lowering operator

â− |α〉 =

∞∑
n=0

cnâ− |n〉 =

∞∑
n=1

cn
√
n |n− 1〉 (77)

and since this is an eigenstate, â− |α〉 = α |α〉 so

α

∞∑
n=0

cn |n〉 =

∞∑
n=1

cn
√
n |n− 1〉 (78)

Applying 〈n| to both sides to pick off the coefficients gives

αcn = cn+1

√
n+ 1 (79)

so
cn+1 =

α√
n+ 1

cn (80)

which is the pattern above.
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Equations and Extra Work Space

ih̄
∂

∂t
|ψ〉 = Ĥ |ψ〉 time dependent Schrodinger equation (81)

Ĥ =
p̂2

2m
+

1

2
mω2

0 x̂
2 Harmonic oscillator Hamiltonian (82)

Harmonic oscillator ladder operators

â+ =
1√

2mh̄ω0

[mω0x̂− ip̂] â+ |n〉 =
√
n+ 1 |n+ 1〉 (83)

â− =
1√

2mh̄ω0

[mω0x̂+ ip̂] â− |n〉 =
√
n |n− 1〉 (84)

Commutation relations
[x̂, p̂] = ih̄ [â−, â+] = 1 (85)

Spin 1/2 operator matrices written in Ŝz basis

Ŝx =
h̄

2

(
0 1
1 0

)
Ŝy =

h̄

2

(
0 −i
i 0

)
Ŝz =

h̄

2

(
1 0
0 −1

)
(86)

Expectation value and uncertainty

〈Q〉 =
〈
ψ
∣∣∣Q̂ψ〉 σ2

Q =
〈
Q2
〉
− 〈Q〉2 σ2

Aσ
2
B ≥

(
1

2i
〈[Â, B̂]〉

)2

(87)
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