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1 Little Calculation Needed

1.1 Part a

These two neutrons are fermions, so their joint wavefunction must be antisymmetric overall.
Because they are in the same state of the harmonic oscillator, their position wavefunction
is necessarily symmetric. Therefore their spin wavefunction must be antisymmetric. When
combining two spin-1/2 particles, there are four possible spin combinations, three of which
are symmetric (the ` = 1 spin states), and one of which is antisymmetric (the ` = 0 spin
state). Hence their spins must be in the ` = 0 spin state, in which their spins are anti-
aligned. The answer to this question is thus that their spins must be oriented oppositely.

1.2 Part b

When a third neutron is added, it must be in the first excited state (because there is no
way to fit a third fermion into the ground state). The first excited state has a greater

〈
x2
〉

than the ground state. Hence, the averaged expectation value increases!

1.3 Part c

The energy of the system goes down! Quick to see by completing the square in the Hamil-
tonian: H = p2/2m+ 1

2mω
2x2 + αx = p2/2m+ 1

2mω
2(x2 − 2α

mω2x) = p2/2m+ 1
2mω

2(x−
α

mω2 )2−α2/2mω2. We see that the Hamiltonian is exactly the same, except shifted slightly
(which doesn’t affect the energy) and with an overall negative constant tacked on (lowering
the energy).

1.4 Part d

The first order correction to the ground state energy vanishes. This follows directly from
expanding x in terms of a+ a†, then calculating 〈0|a+ a†|0〉 = 0.
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2 Yukawa potential

2.1 Part a

The energy change to the ground state from the given perturbation is simply

E(1) = 〈1, 0, 0|Ae
−r/λ

r
|1, 0, 0〉

=
4A

a30

∫
e−2r/a0e−r/λrdr

=
4Aλ2

a0(a0 + 2λ)2

2.2 Part b

Even though the excited states are degenerate, they have different L2 and Lz eigenvalues.
This allows us to use non-degenerate perturbation theory because those are Hermitian
operators that commute with the perturbation Hamiltonian. Said another way, the excited
states are the ”good” eigenstates with which to do non-degenerate perturbation theory
(for this perturbation), which we know because they are different eigenstates of Hermitian
operators that commute with the perturbation.

3 Degenerate perturbation theory

3.1 Part a

The strategy here is to find the eigenvectors of the degenerate sub-matrix of H1 (i.e. the
lower right 2x2 sub-matrix). These eigenvectors ψ23a and ψ23b will satisfy 〈ψ23a|H1 |ψ23b〉 =
0, which means we can use normal degenerate perturbation theory with them. We find the
eigenvalues:

0 = (δ − λ)2 − γ2

λ± = δ ± γ

The eigenkets are thus (written as a row vector transpose for simplicity, because really
they should be column vectors). The T means transpose (turning the row vector into a
column vector).

|ψ23a〉 =
1√
2

(0, i, 1)T

|ψ23b〉 =
1√
2

(0,−i, 1)T
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3.2 Part b

The first correction to the energy is simply

E
(1)
23a = 〈ψ23a|H1|ψ23a〉

=
1

2
(0,−i, 1)H1(0, i, 1)T

=
1

2
(0,−i, 1)(i∆− iσ, iδ + iγ, γ + δ)T

= γ + δ

3.3 Part c

The second correction to the energy of ψ23a is given by the following. Note that only one
term contributes because of how we defined our eigenstates in part a.

E
(2)
23a = 〈ψ1|H1 |ψ23a〉 /(ε23 − ε1)

=

∣∣∣∣ 1√
2

(1, 0, 0)H1(0, i, 1)T
∣∣∣∣2/(ε23 − ε1)

= (∆− σ)2/2(ε23 − ε1)
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