Physics 137B, Spring 2016 Midterm 1 Good luck!

1 Little calculation needed

- a. [5 points] Two neutrons (spin 1/2) are in the ground state of a harmonic oscillator potential. Neglect any interactions between them. What can you say about the orientation of their spin?
- b. [5 points] What happens to the expectation value $\langle x^2 \rangle$ averaged over all particles when a third neutron is added, assuming it takes the lowest available energy level?
- c. [5 points] A particle is in the ground state of a harmonic oscillator when a potential $H' = \alpha x$ (a constant weak force) is applied. Does the energy of the system go up or down?
- d. [5 points] Calculate the correction $\psi_0^{(1)}$ to the ground state in first-order perturbation theory for the system in part c.

2 Yukawa potential

Consider a hydrogen atom in a state $|n, l, m\rangle$, neglecting fine structure or hyperfine structure. It has been suggested¹ that the Higgs field leads to an additional potential between the proton and the electron of the form

$$V(r) = A \frac{e^{-r/\lambda}}{r},$$

where A and λ are constants. This Yukawa potential is typical for interactions mediated by massive particles.

- a. [10 points] Use first-order, nondegenerate perturbation theory to calculate the energy change for the ground state $|1,0,0\rangle$.
- b. [5 points] Justify the use of nondegenerate perturbation theory in this problem even for excited states of hydrogen, despite their degeneracy.

3 Degenerate perturbation theory

Consider a system with three eigenstates $|\psi_j\rangle$ (j=1,2,3). The Hamiltonian of this system can be written as

$$\left\langle \psi_{i}\right|H_{0}\left|\psi_{j}\right\rangle =\begin{bmatrix}\epsilon_{1} & 0 & 0\\ 0 & \epsilon_{23} & 0\\ 0 & 0 & \epsilon_{23}\end{bmatrix}$$

where $\epsilon_1 < \epsilon_{23}$ and $|\psi_2\rangle$ and $|\psi_3\rangle$ are degenerate in energy. The system is now perturbed such that the new Hamiltonian can be written as $H = H_0 + H_1$ where

$$\langle \psi_i | H_1 | \psi_j \rangle = \begin{bmatrix} \tau & \Delta & -i\sigma \\ \Delta & \delta & i\gamma \\ i\sigma & -i\gamma & \delta \end{bmatrix}$$

and Δ , δ , σ , γ , and τ are all real.

- (a) [5 points] Determine the correct 0th order wave functions for the two degenerate states (j=2,3) that you would use for degenerate perturbation theory. Denote them $|\psi_{23a}\rangle$ and $|\psi_{23b}\rangle$.
- (b) [5 points] Determine the 1st correction to the energy of $|\psi_{23a}\rangle$.
- (c) [5 points] Determine the 2nd correction to the energy of $|\psi_{23a}\rangle$.

Useful equations

Hydrogen ground state wave function

$$\psi_{100}(r,\theta\phi) = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}.$$

An integral

$$\int re^{-\alpha r}dr = -\frac{1+\alpha r}{\alpha^2}e^{-\alpha r}$$

Harmonic oscillator:

$$a = \frac{\omega mx + ip}{\sqrt{2\omega m\hbar}}, \quad a^\dagger = \frac{\omega mx - ip}{\sqrt{2\omega m\hbar}}, \quad [a,a^\dagger] = 1,$$

$$H = \hbar\omega(\hat{n} + 1/2), \quad \hat{n} = a^{\dagger}a, \quad \hat{n}|n\rangle = n|n\rangle,$$
$$a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle, \quad a|n\rangle = \sqrt{n}|n-1\rangle.$$

¹C. Delaunay, R. Ozeri, G. Perez, and Y. Soreq, Probing The Atomic Higgs Force. e-print: arXiv:1601.05087