
U.C. Berkeley — CS170 : Algorithms Midterm 1 Solutions
Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, 2017

Midterm 1 Solutions

1. (4 points) For the directed graph below, find all the strongly connected components and draw the
DAG of strongly connected components. Label each strongly connected component with all the nodes
it contains.

B A J

C D E

F G H

Draw the DAG in the box below:

B AJ

CDEGH

F

2. (8 points) Execute DFS on the same graph (reproduced here for convenience) starting at node A and
breaking ties alphabetically. Draw the DFS tree/forest. Mark the pre and post values of the nodes
with numbering starting from 1.

B A J

C D E

F G H

Node pre post
A

B

C

D

E

F

G

H

J

Draw the DFS Tree/Forest in the box below:

B A J

C D E

F G H

Node pre post
A 1 4

B 5 18

C 6 17

D 7 16

E 8 15

F 11 12

G 10 13

H 9 14

J 2 3

3. (4 points) In the DFS execution from above, mark the following edges as as T for Tree, F for Forward,
B for Back and C for Cross. (No justification necessary)

2

Edge Type
G→ C

B

A→ J
T

B → A
C

B → D
F

4. (a) (4 points) Draw a strongly connected graph with 6 vertices with the smallest possible number
of edges in the box below.

A B C D E F

(b) (2 points) In general, the minimum number of edges in a strongly connected directed graph with

n vertices is n . (no justification necessary)

You can’t have less than n edges as it will make the graph disconnected. So the minimum is
simply a loop through all the vertices.

5. (6 points) Suppose G = (V,E) is an undirected graph with positive integer edge weights {we|e ∈ E}.
We would like to find the shortest path between two vertices s and t with an additional requirement:
if there are multiple shortest paths, we would like to find one that has the minimum number of edges.

We would like to define new weights {w′
e|e ∈ E} for the edges so that, a single execution of Dijkstra’s

algorithm on the graph G with new weights {w′
e}, starting from s finds the shortest path to t with this

additional requirement.

How should we set the new weights w′
e?

w′
e = we + 1

|V |

No justification necessary.

The intuition here is that we want to add something to the edges so that we can differentiate a path
using 4 edges and a path using 5 edges but with the same distance. In the meantime, we need to make
sure the original Dijkstra’s doesn’t break. Therefore, we add the fraction 1

|V | so that the total length

of any path will be increased by at most 1. Since all the edges are positive integers, Dijkstra’s will run
exactly the same as before.

6. (8 points) Here is an implementation of Bellman-Ford algorithm:

Input: Directed Graph G = (V,E), with edge lengths {`e|e ∈ E}.
Output: Compute distances dist(u) to each vertex u from a start vertex s.

3

for i = 1 to n do
dist(u)←∞
prev(u)← nil

end for
dist(s)← 0
k ← 0
repeat
for i = 1 to n do
for each directed edge (i, j) do

update(i, j)
end for

end for
k ← k + 1

until all dist values stop changing OR (k = n)
Algorithm 1: Bellman-Ford Algorithm

It turns out that the runtime of the above algorithm can be very sensitive to the way in which vertices
in a graph are numbered. In other words, the runtime of the algorithm on the same graph can widely
vary, if we change the numbering of the vertices.

Give one graph G on 11 vertices and two ways to label the vertices of G, such that in one labelling the
algorithm makes 20 calls to update, while in the other labelling the algorithm terminates in 102 calls
to update.

The following graph will call update exactly 20 times.

A B C D E F G H I J K

The following graph will call update exactly 102 times.

K J I H G F E D C B A

7. (6 points) We computed the minimum spanning tree T on a graph G with costs {ce}e∈E . Unfortu-
nately, after computing the minimum spanning tree, we discover that the costs of all the edges in the
graph have changed as follows: the new cost we are given by,

we =

{
2 · ce if ce > 100

0 if ce ≤ 100

Is the tree T that we computed earlier, still a minimum spanning tree of the graph?

Write “yes” or “no”: yes

If yes, prove; if no, disprove with a counterexample.

Consider an edge e that is part of the MST T composed from graph G with costs {ce}e∈E . We

will show that every such edge e must also be part of the MST T ′ after the weight update.

Case 1
Suppose ce ≤ 100, then we = 0. Since e was part of T , it is an edge with the minimal weight connecting

4

two sub-MSTs. If we have an edge e′ such that ce′ ≤ 100, then in the new MST T’, we = we′ . Thus
edge e will still be part of MST T ′ as adding either e or e′ would not add any cost to the total cost of
T ′. If ce′ > 100, then we < we′ = 0 and thus e is part of MST T ′.

Case 2
Now suppose ce > 100, then we = 2 ·ce. Suppose for the sake of contradiction that e is not part of MST
T ′. There must be some edge e′ part of MST T ′ connecting the two sub-MSTs that e is connecting. If
we′ = 0, then ce′ ≤ 100 < ce. Thus e′ must be part of MST T rather than e. This is a contradiction
because e is part of T and having both e and e′ connecting the two sub-MSTs would create a cycle
and violate the tree property. Now if we′ , ce′ > 100 and we assume that e′ is part of T ′ rather than e,
2 ∗ ce′ < 2 ∗ ce. Thus c′e < ce. Again e′ must be part of MST T , a contradiction.

[The most common mistake was to ignore the case where an edge e of weight ce > 100 may be replaced
by an edge e′ with prior weight ce′ ≤ 100. For full credit, we needed an explanation of why this case
was impossible.]

Alternative solution
A less common, but correct alternative solution was to argue that Kruskal’s algorithm produces valid
MSTs by considering each edge e ∈ G in increasing order of weight ce. The ordering of the edges is
preserved in this update. Therefore, if T was a valid solution produced by Kruskal’s algorithm prior
to the update, then T will remain a valid solution after the update.

8. (6 points) In this graph, some of the edge weights are known, while the rest are unknown.

D C

B

A

E F

G H

?

? ?

?

?

??

2

1

4

3

cost(A,D) = 2, cost(B,D) = 1, cost(C,D) = 4, cost(B,E) = 3

List all edges that must belong to a minimum spanning tree, regardless of what the unknown edge
weights turn out to be. Justify each of your edges briefly (a sentence or less is enough).

Edges that must belong to
every MST

Justification

G−H This is the only edge that can connect H to any other vertex, so
it must be included in any MST. Remember that any MST must
span all of the vertices.

B −D The cut property. More details: let S1 = D, and S2 = V −
S1 = ABCEFGH. Then three edges from the original graph will
connect these two forests, with edge weights: 1, 2, 4. So any MST
must contain the B −D edge of weight 1.

B − E Also by cut property. Consider S1 = ABD, and S2 = V − S1 =
CEFGH. Then the 3 edge is the shortest edge connecting both
forests.

5

Alternative justifications:

Run Prim’s MST algorithm, starting from H. H − G is the shortest edge, so it will be added to the
MST. Then we know at least one MST will include this edge.

And similarly, we can run Prim’s, starting from D. Then the D−B edge is the first edge to be added
to the MST, so we know at least one MST will include D −B.

But for B − E, the Prim’s argument gets more complicated. You could argue that running Prim’s
starting from any of ABD will always add the edge of weight 3, and never the edge of weight 4.

9. Design an efficient algorithm for the following problem

Input: n numbers {a1, . . . , an}
Goal: Compute the polynomial with a1, . . . , an as its roots. In other words, compute

coefficients b0, . . . , bn so that (x− a1) · (x− a2) · · · (x− an) = b0 + b1x + . . . bnx
n.

(Hint: Try divide and conquer & use O(n log n) time polynomial multiplication algorithm as a blackbox)

(a) (10 points) Pseudocode:

procedure PolynomialWithRoots({a1, . . . , an}):

if n = 1 then
b0 ← −a1
b1 ← 1
return b0, b1

end if
q(x)← PolynomialWithRoots({a1, . . . , abn/2c})
r(x)← PolynomialWithRoots({abn/2c, . . . , an})
p(x)← MultiplyPolynomials(q(x), r(x))
return coefficients of p(x)

(b) (3 points) Write the recurrence for the running time of the algorithm in the box.

T (n) = 2T
(
n
2

)
+ O(n log n)

(c) (6 points) Solve the recurrence to compute the running time and put your answer in the box.
Show your work below the box.

T (n) = O(n log2 n)

To show this, we use the recurrence tree:

n log n

vv ((

Sum: n log n

n
2 log

(
n
2

)
|| !!

n
2 log

(
n
2

)
}} !!

Sum: n log
(
n
2

)
n
4 log

(
n
4

)
∗ n

4 log
(
n
4

)
n
4 log

(
n
4

)
n
4 log

(
n
4

)
Sum: n log

(
n
4

)
...

6

The total, then, is

n log n + n log
(n

2

)
+ log

(n
4

)
+ · · ·

= n
(

log n + log
(n

2

)
+ log

(n
4

)
+ · · ·

)
= n (log n + (log n− log 2) + (log n− log 4) + · · ·)
= n ((log n + log n + · · ·+ log n)− (log 2 + log 4 + · · ·+ log n))

= n
(
(log n)2 − (1 + 2 + · · ·+ log n)

)
≈ n

(
log2 n− log2 n

2

)
=

n log2 n

2

= Θ
(
n log2 n

)
We could also use a more general version of the Master Theorem, which states that if T (n) =
aT (n/b) + f(n), where a ≥ 1, b > 1, and f(n) = Θ(nc logk n) where c = logb a, then T (n) =

Θ
(
nc logk+1 n

)
. In this case, a = b = 2, c = 1 = logb a = log2 2, and k = 1.

10. (13 points) You are given the road network G = (V,E) of a country, and the lengths {`e|e ∈ E} of
each road in the network.

Some of the cities have airports, while others don’t. Let F be the subset of cities that have an airport
in them.

Devise an algorithm to compute the distance from each city to the nearest airport. (Assume that the
graph is directed and that all edge lengths are non-negative).

Remember every correct algorithm will receive a score depending on its runtime. (can you do it with
the same run-time as Dijkstra’s?).

(a) Main Idea: (try less than 6 sentences if you can, but don’t fret if you go over)

Reverse the graph. Add a dummy source vertex s to the graph. Add a zero weight edge from the
source vertex to each airport. Then run Dijkstra on s to find the distance from s to every vertex
in the graph. This shortest distance from each city to the nearest airport is the distance from the
vertex that represents this city to vertex s.

It is equivalent to merge all airports into a single vertex or to run a modified Dijkstra’s in which
all airports are initialized with dist = 0.

Brute force solutions were common, involving running Dijkstra from each vertex or just from
each airport vertex. These are correct but inefficient, as the running time will be O(|V |(|V | +
|E|) log |V |) or O(|F |(|V | + |E|) log |V |), and we have no bound on |F | except that it is at most
|V |.

(b) Runtime of the algorithm = O((|V |+ |E|) log |V |)

(c) Proof of Correctness (try less than 4 sentences if you can, but don’t fret if you go over)

This is a directed graph and the dummy node s that we add is a source node which has only
edges going out and no edges going in. Thus adding the node s won’t add a path between any
two nodes from the original graph. In addition, we set the length of all edges of s to zero, so it
won’t add any additional length. Through Dijkstra (which we know finds shortest distances from
a source node to all others) we will find the shortest distance from each node to node s (because

7

this is equivalent to the reversed path in the reversed graph), which is the same as the shortest
path to any airport.

A brute force solution can be seen to be correct by noting that Dijkstra will find the shortest path
between every relevant pair of nodes, via multiple calls, and that we can compare them to find
the minimum in each case.

11. (10 points) Suppose you are given an array A[1 . . . n] of sorted integers that has been circularly shifted
k positions to the right for some k. For example, [35, 42,−5, 15, 27, 29] is a sorted array that has been
circularly shifted k = 2 positions, while [27, 29, 35, 42,−5, 15] has been shifted k = 4 positions. We can
obviously find the largest element in A in O(n) time.

Assuming all the integers in the array are distinct, describe an O(log n) algorithm to find the largest
element in A.

Brief but precise description of the algorithm: (try less than 6 sentences if you can, but don’t
fret if you go over)

Main idea: We want to leverage the sorted-ness of the array, so we will implement a modification
of binary search where you always recurse on the ”unsorted” array. Compare A[0] and A[mid] (where
mid = dn2 e). If A[0] < A[mid] then the left half of the array is sorted; the max value is either the mid
or in the right half of the array. Store the mid as the temporary max and repeat on the right half. If
A[0] > A[mid] then the left half is unsorted and the max is somewhere in that array, so repeat on the
left half.
We can also compare the mid point with the last element. If A[last] < A[mid], we look at the right
half of the array, including the mid point. If A[last] > A[mid], we look at the left half of the array.

Other splits are also possible. For example, comparing A[dn4 e] with A[d 3n4 e]. As long as a solu-
tion compares 2 points that are far enough apart, it can be used to determine the portion of the array
to make the recursive call. If left point is greater than right point, make the recursive call on the
element between them. Otherwise the maximum element is in the other part of the array, which can
be obtained by joining the two parts in the same relative positioning, i.e. A[1, . . . , dn4 e]+A[d 3n4 e, . . . , n].

A common mistake was to compare immediate neighbors. But this can only be used to determine
if the left element is the max. It does not have enough information to tell you which side the max is
on and thus cannot obtain a O(log n) solution.

8

