
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Spring 2010 Instructor: Dr. Dan Garcia 2010-03-09

 CS61C Midterm 
After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...

	

Last Name Answer Key

First Name
Student ID Number

Login cs61c-

Login First Letter (please circle) a b c d e f g h i j k l m

Login Second Letter (please circle) a b c d e f g h i j k l m
n o p q r s t u v w x y z

The name of your LAB TA (please circle) Bing Eric Long Michael Scott
Name of the person to your Left

Name of the person to your Right
All the work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in CS61C
who have not taken it yet. (please sign)

a) Instructions (Read Me!)
• Don’t Panic!
• This booklet contains 7 numbered pages including the cover page. Put all answers on these pages; don’t

hand in any stray pieces of paper.
• Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your backpacks,

laptops and jackets at the front. Sit in every other seat. Nothing may be placed in the “no fly zone” spare
seat/desk between students.

• Question 0 (1 point) involves filling in the front of this page and putting your login on every sheet of paper.
• You have 180 minutes to complete this exam. The exam is open book, no computers, PDAs, calculators.
• There may be partial credit for incomplete answers; write as much of the solution as you can. We will

deduct points if your solution is far more complicated than necessary. When we provide a blank, please fit
your answer within the space provided. You have 3 hours...relax.

Question 0 1 2 3 4 5 Total
Minutes 1 45 15 30 30 30 (+30 to review) = 180
Points 1 20 10 18 11 15 75

Score

2/7

Question 1: Brian Harvey would be proud… (20 pts, 45 min)
Working with a partner, you want to implement a scheme
sentence ADT (a linked list of words), and you’re going to
start with the constructor se(word, sentence). Your partner
writes the interface, and shows you how they want to call se,
and your job will be to write the subroutine. You agree on
the standard struct definition on the right.
Here’s how your friend wants to call se:
#include <string.h>
#include <stdio.h>
int i;
int main() {
 char word[8];
 sentence_t *head = (sentence_t *) malloc (sizeof(sentence_t)); // assume succeeds…
 head->word ="go!";
 head->next = NULL;
 for (i=1;i<=3;i++) {
 printf("Word? "); scanf("%s",word); se(word,head);
 }
 //  Right here, if you ran this program, and typed the following:
}
 // Word? one
 // Word? two
 // Word? three

 // …it’d create the list
 // to the right, which
 // in scheme would be:
 // (three two one go!)

a) Complete se so it will work with your friend’s main code, even if he later supports longer words.
Think about error checking you might need, and call exit_with_msg below, if needed. Your
solution should not need any looping/recursion, just statements that connect things up correctly.
void se(char *word, sentence_t *head) {

 sentence_t *new = (sentence_t *) malloc (sizeof(sentence_t));

 if(!new) exit_with_msg(“se: Couldn’t allocate space for a new list node”);

 new->word = head->word;

 new->next = head->next;

 head->next = new; head->word = (char *) malloc (sizeof(char)*strlen(word)+1);
if(!head->word) exit_with_msg(“se: Couldn’t allocate space for the string”);
strcpy(head->word,word);

}

void exit_with_msg(char *msg) { printf(“Error! %s\n”,msg); exit(1); }

b) At “ Right here”, how much space (Bytes) is used by i, word, & head (and their data) together?
Stack Heap Static Code

12 (8 word,4 head) 4*8(cons)+14(str)=46 4 (i) [or 8…go!\0] 4 (go!\0) [or 0]

// Assume compiler packs tight

typedef struct sentence_node {
 char *word;
 struct sentence_node *next;
} sentence_t;

two three one

head

go!

Login: cs61c-____

3/7

Question 1: Brian Harvey would be proud… (continued) (20 pts, 45 min)
That interface is counterintuitive, you say. You decide the interface should be changed so that the
boxed call to se looks like this: head = se(word, head) and you now ask them to write se, but to save
space, only keep ONE copy of any word. That is, they should check if the word is already in your
sentence, and if it is, to share it. They write the following but you suspect share_or_new has bugs.

 sentence_t *se(char *word, sentence_t *head) {
 sentence_t *new = (sentence_t *) malloc (sizeof(sentence_t)); // assume succeeds…
 new->word = share_or_new(word, head);
 new->next = head;
 return new;
 }

 char *share_or_new(char *word, sentence_t *head) {
1 if (word = head->word) // Found it, share!
2 return head->word;
3 if(head == NULL) { // Didn’t find it, create one
4 char new[10];
5 strcpy(new,word);
6 return new;
7 }
8 return share_or_new(word, head->next); // Keep looking…
 }

c) Simulate running the program with the same user input as before.

If the code returns without error, show in scheme format, like
(three two one go!), what head is at “ Right here”. (go! go! go! go!)
If the code crashes, indicate the value of i when the error occurs. ___________________________

d) Just for fun, change the “=” in line 1 to “==” (make that change permanent in the code above).

Instead of our previous user input, we type the word go! three times. If there is no crash by the time
we get to “ Right here”, draw the box-and-pointer diagram for head (just like on the previous page).
If there is a crash, list the functions in the stack frame before the error.
E.g., if main called sub, which called subsub, which crashed, you’d write: mainsubsubsubERROR.

main  se  share_or_new  share_or_new  ERROR

e) Finally, fix all the bugs so se works in general (not just for this particular main). Your fixes can be of
the form: “change line i to (fill in the blank)”, or “insert (fill in the blank) before/after line i", or
 “move lines i through j above line k. You may not need all the blanks.
Change line 1 to if(!strcmp(word,head->word))

Change line 4 to be char *new = (char *) malloc (strlen(word)*sizeof(char)+1);

Add if(!new) exit_with_msg(“share_or_new: Couldn’t malloc space for string”); below 4

Move lines 3 through 7 (8 with the addition of the line above) above line 1

4/7

Question 2: L1 and L2 below are Booth needed for the algorithm… (10 pts, 15 min)
Below is a MIPS function. Read it carefully and use it to answer the following questions.

myst: move $v0, $0

L1: andi $t0, $a0, 1

 beq $t0, $0, L2

 addu $v0, $v0, $a1

L2: sll $a1, $a1, 1

 srl $a0, $a0, 1

 bne $a0, $0, L1

 jr $ra

a) In one sentence, briefly summarize what myst does, precisely (assume the inputs are unsigned).

Don’t describe the algorithm, abstract at a high level what the algorithm is doing.
(e.g., “it returns the # of bits in common of its three arguments” or “sets $a1 to -$a0”)

It returns the lowest 32 bits of $a0*$a1 in $v0 = ($a0*$a1) mod 232 = ($a0*$a1)&0xFFFFFFFF .

For question (b) only, assume $a1 is a two’s complement negative number.
b) Would myst still work? Briefly explain why or why not.

Yes. Adding two’s complement numbers is no different than adding unsigned numbers,The
answer’d be a 2s complement #. We’re using addu, so there are no overflow worries.

For question (c) and (d), let’s change the srl to sra.
c) For what values of its inputs would myst still do what you said it does in (a)?

When the MSB of $a0 is 0 (i.e., $a0 & 0x8000000 == 0)

d) When it doesn’t return the same answer, what does myst return / do?

loops indefinitely ($a0 never gets to 0)

Login: cs61c-____

5/7

Question 3: Tasting Menu… (18 pts, 30 min)
Thanks to a breakthrough, we can store 3 values per digit instead of the usual 2. Rather than encoding
0, 1, and 2, we choose to encode -1, 0, and 1 (We call these binary-with-negative base 2 digits binets).
To make notation cleaner, we’ll use 1 to represent -1, and we’ll precede binets with 0bn. Binet numbers
allow us to express negative numbers with an “unsigned” encoding, which is great. However, now
some numbers have multiple representations, like 110 = 0bn0001 = 0bn0011 (i.e., 1*21 + -1*20 = 1)

a) How many unique numbers can be represented using N unsigned binets? _______2N+1 – 1_________

b) Recall that we negated 2’s complement binary numbers by

inverting each bit and then adding a constant offset (1). It
turns out we can negate unsigned binets with a similar
technique! Fill in the truth table for what the binet “inversion”
function should do per bit, and the constant offset that
should be added at the end to make it work perfectly.

 0t0000 List all the
representation(s) for zero for a binet nibble (4 binets). _____________________________

Assume the heap has 7 contiguous free bytes left (below), and best
fit, given two equally good candidates, will pick the leftmost one.

d) Fill in the gaps in the C snippet on the right such that the location

of e is different depending on whether malloc uses first-fit, next-
fit, or best-fit. Indicate in the diagram below where the remaining
data is (by a single letter) and where the fits would place e (by
writing FIRST, NEXT and BEST in the appropriate slot.

e) We’re using C99 and need to store n integers, but can’t decide how to reserve space for them.

What is the best argument for using each one? Also, if $s0 contains the value of n, what minimal
MAL MIPS would the C translate to, that reserves space and puts &A[0] (i.e., where A points) in $s1?
All volatile registers have been saved & we’ll soon need $s0 and $s1. (Note: malloc is just a function)

 int A[n]; int *A = (int *)malloc(sizeof(int)*n);

Why? Really fast
(3 fast MIPS instructions)

Reliability (we can catch if malloc
fails) OR can give storage to caller

MAL
MIPS

sll $t0 $s0 2
subu $sp $sp $t0
move $s1 $sp

sll $a0 $s0 2
jal malloc
move $s1 $v0

f) How many total different instructions could we list on the green sheet if,

instead of an explicit shamt field, we stored the shift amt in the unused rs, 63+211(=2,048)=2,111
register and expanded the funct field to use the shamt bits also? Be exact. ________________

Original
bit

New
bit

Constant
Offset

1 1

0 0

1 1

0

char *a, *b, *c, *d, *e;

a = (char*) malloc(__2__);

b = (char*) malloc(__1__);

c = (char*) malloc(__1__);

d = (char*) malloc(__1__);

free(__a__);

free(__c__);

e = (char*) malloc(1);
FIRST b BEST d NEXT

6/7

Question 4: Did somebody say “Free Lunch”?! (11 pts, 30 min)
Consider two competing 8-bit floating point formats. Each contains the same fields (sign, exponent,
significand) and follows the same general rules as the 32-bit IEEE standard (denorms, biased exponent,
non-numeric values, etc.), but allocates its bits differently. To save you time, you only need to complete
and circle the (LEFT or RIGHT) blank whose value is closest to zero, that’s the only one we’ll grade! (If
they’re the same value, write the answer in both, & circle both). E.g,. The number represented by 0x00
was 0 for both, so we circled both. But for “exponent bias”, just from the # of EE…E bits in each, we know
|LEFT’s bias| < |RIGHT’s bias|, so there’s no need to calculate or write the answer on the RIGHT.

 “LEFT” format:

scratch space (show all work here)

EE=00  denorm, 0.MMMMM * 2-(BIAS-1) =
0.MMMMMEE=01  1.MMMMM * 21-BIAS=0 =
1.MMMMMEE=10  1.MMMMM * 22-BIAS=1 =
1M.MMMMEE=11  Inf, NaNs

Number represented by 0x00: 0

Exponent Bias: 1
 (32)#

Numbers (0 ≤ n < 1): __________________
 32# Numbers

(1 ≤ n < 2): __________________

c) Difference between two 2-5
smallest positive values: _________________

d) Difference between two (2-4)

biggest non-∞ values: _________________

e) Positive Integer closest to 0 (4)

it cannot represent: _________________

S EE MMMMM “RIGHT” format:

scratch space (show all work here)

E…E=000000denorm, 0.M * 2-(BIAS-1) = 0.M * 2-

30E…E=000001 1.F * 21-BIAS=-30 = 1.M * 2-30#=1 
1.0*20  M=0,E…E-31=0  E…E=31SE…EM =
001111102 = 6210E…E=111110 1.M * 262-BIAS=31 =
1.M * 231E…E=111111 Inf, NaNs

Number represented by 0x00: 0

Exponent Bias: 31 (not graded, so no need to write)
 62#
Numbers (0 ≤ n < 1): ___________________
 (2)#
Numbers (1 ≤ n < 2): ___________________

Difference between two (2-31)
smallest positive values: ___________________

Difference between two 230
biggest non-∞ values: ___________________

Positive Integer closest to 0 5
it cannot represent: ___________________

S EEEEEE M

f) Which implementation is better for approximating π, (LEFT) or RIGHT ? (circle one)

Login: cs61c-____

7/7

Question 5: Euclid’s Revenge… (15 pts, 30 min)

The Euclidean Algorithm is used to find the greatest common divisor (GCD) of two numbers a and b.
E.g., GCD(8,6)=2. The algorithm works because (a ≥ b): GCD(a,0)=a, GCD(a, b) = GCD(b, a mod b).

a) Implement the Euclidean Algorithm below recursively (but as efficiently as you can) in MAL MIPS.

Follow the hints given by the comments; you may not need all the lines. To assist you, assume that
mod is correctly implemented as a MIPS subroutine that returns $a0 mod $a1 in $v0.
The first letter of the first MIPS instruction is b.

 ne $a1, $0, recGCD: b_________________________________ # Handle base case
first; we assume a ≥ b

 addu $v0, $a0, $0 ## return a __________________________________

j done
 addiu $sp, $sp, -8 ## prologuerec: __________________________________ #

Recursive case
 sw $ra, 4($sp) #  this should be circled (part d)

 sw $a1, 0($sp) ## save b OR sw $s0, 0($sp) ## save $s0 so we can

use__________________________________
 OR move $s0, $a1 ## keep b in

$s0__________________________________
 jal mod__________________________________
 move $a1, $v0 ## b = a mod b__________________________________
 lw $a0, 0($sp) ## restore a OR move $a0,

$s0__________________________________

jal GCD

 ## epilogue__________________________________
 OR lw $s0,

0($sp)__________________________________
 lw $ra, 4($sp)__________________________________

addiu $sp, $sp, 8__________________________________

done: jr $ra

For questions (b) & (c), assume the address of GCD is 0x1000008

0x14A00002,0x14050002Translate the first MIPS instruction to hex:

0x0C400002Translate the jal GCD to hex:

d) You notice your code sometimes crashes when you call

GCD with large numbers. Circle the instruction that causes stack overflow
the crash, and in two words, explain why does it crash. ______________________
 rewrite iterativelyIn
two words, what can you do to combat this instability? ______________________

