
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Spring 2014 Instructor: Dr. Dan Garcia 2014-03-12

L CS61C Midterm J
After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...

Last Name Answer Key
First Name

Student ID Number
Login cs61c-

Login First Letter (please circle) a b c d e f g h i j k l m
n o p q r s t u v w x y z

Login Second Letter (please circle) a b c d e f g h i j k l m
n o p q r s t u v w x y z

The name of your LAB TA (please circle) Alan | Jeffrey | Kevin | Roger | Sagar | Shreyas | Sung Roa | William
Name of the person to your Left

Name of the person to your Right
All the work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in CS61C
who have not taken it yet. (please sign)

Instructions (Read Me!)
• Don’t Panic!
• This booklet contains 6 numbered pages including the cover page. Put all answers on these pages;

don’t hand in any stray pieces of paper.
• Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your

backpacks, laptops and jackets at the front. Sit in every other seat. Nothing may be placed in the “no fly
zone” spare seat/desk between students. No computing devices allowed.

Question 1 2 3 4 Total
Minutes 48 24 24 24 120
Points 30 15 15 15 75

Score 30 15 15 15 75

Question 1: What’s that funky smell?! Oh yeah, it’s potpourri... (48 min, 30 pts)
a) The unsigned distance between two bit patterns is

the absolute value of the difference of their values,
interpreted as unsigned numbers. Rank the following
according to the unsigned distance between -1 and 0
(+0 if a representation has multiple zeros) in that
representation. You should assign a rank of 1 to the
representation with the smallest unsigned distance
between -1 and 0.

Show all your work here!

b) As defined in IEEE 754-2008 standard, half-precision floating point (FP) is a 16-bit FP
representation: 1 sign bit, 5 exponent bits, and 10 significand bits. The exponent bias of 15. What
is the binary representation of the smallest half-precision float which is strictly larger than 1? What
is its value? Leave your answer in terms of powers of two.
 0 01111 0000000001 1 + 2-10

 0b______________________ = ___________________________________

Show all your work here!

c) How would J-type instructions be affected (in terms of their “reach”) if we relaxed the requirement

that instructions be placed on word boundaries, and instead required them to be placed on half-
word boundaries.
The range over which we can jump would be cut in half.

d) Building on the idea from the previous question, give a minor tweak to the MIPS ISA to allow us to

use true absolute addressing (i.e., maximal “reach”) for all J-type instructions.
Only allow jumps to addresses which are multiples of 2^6.

e) Assume a request for 100 Bytes on either the Stack and Heap would succeed.

In the worst case, how many clock cycles would it take to allocate 100 Bytes in each area & why?
(“How many” should be answered with one of: {1, tens, thousands+})
 1 it’s just addiu $sp $sp -100
Stack: ___________ because ___
 Thousands+ the freelist might contain lots of slivers to check
Heap: ___________ because ___

int64_t __5__
64-bit One’s Complement __4__
64-bit Sign and Magnitude __2__
64-bit Bias notation __1__
double __3__

Question 1: What’s that funky smell?! Oh yeah, it’s potpourri... (continued) (48 min, 30 pts)

f) You have a program that can achieve almost a 20x speedup with millions

of processors, so what is the percent of the parallel portion of its code? ___95___

Show all your work here!

g) Suppose the assembler knew the file line numbers of all labels before it began its first pass over a

file, and that every line in the file contains an instruction. Then the assembler would need __2__

pass(es) to translate a MAL file, and __1__ pass(es) to translate a TAL file. These numbers differ

because of _____________pseudoinstructions______________ (write n/a if they don't differ).

h) Complete the code below, using only one TAL instruction, so that it returns true iff $a0 is an I-type

instruction or a J-type instruction, and then translate the instruction into binary then hexadecimal.
 srl $v0 $a0 26 0000|00 00|000 0|0100 0001|0 110|10 00|0010 0004 1682
IJ-instr: ___________________ è 0b________________________________ è 0x___________

 jr $ra

Show all your work here!

i) What is one thing Google did to increase their Power Usage Efficiency (PUE)?

Careful airflow handling, elevated cold aisle temp, use free cooling, per-server ups
___.

Question 2: Running in circles (24 min, 15 pts)
a) Recall the exercise ll_cycle from lab 2, in which we checked if a linked list contained a cycle

using the tortoise and hare algorithm. We’ve provided you with most of a simple recursive
implementation in the space below. Fill in the base cases.

int ll_has_cycle(node *ptr) {
 if (!ptr)
 return 0;
 return has_cycle(ptr, ptr->next);
}

int has_cycle(node *tortoise, node *hare) {
 hare == tortoise
 if (___)
 return 1;
 !hare || !hare->next
 if (___)
 return 0;

 return has_cycle(tortoise->next, hare->next->next)
}

b) Now that you've warmed up on the C version of this code, let’s convert has_cycle into recursive

MAL MIPS. Assume that the fields of the structs are not permuted from the struct definition. You
may use fewer lines than we provide you, but do not add any more than the space provided.

$a0 contains the pointer to the tortoise, $a1 contains the pointer to the hare.

has_cycle: li $v0 1

 beq $a0 $a1 done

 li $v0 0
 $a1 $0
 beq _______ ______ done
 lw $a1 4($a1)

 $a1 $0
 beq _______ ______ done
 lw $a0 4($a0)

 lw $a1 4($a1)

 $sp $sp -4

 addiu _____ _____ _____ ß circled, changed to nop
 sw $ra 0($sp)
 _______________________ ß circled, changed to nop
 jal has_cycle
 _______________________ ß change to j has_cycle
 lw $ra 0($sp)

 $sp $sp 4
 addiu _____ _____ _____

done: jr $ra

c) You want to change this to be an iterative MIPS solution, but you want to change the fewest lines

you can. Circle those lines you would change to make to the program work iteratively.

typedef struct node {
 int value;
 struct node *next;
} node;

Question 3: Our band is called 1023MiB... We haven’t had any gigs yet. (24 min, 15
pts)

We have a standard 32-bit byte-addressed MIPS machine with a 1KiB direct-mapped write-back
cache and 16B block size.

a) How many bits are used for the Tag? ____22____ …Index? ____6____ …Offset? ____4____

Consider the following C code, and answer the questions below. d and s are pointers to 8-bit
unsigned integer arrays, of the same size (a multiple of the cache size) that are aligned on 16-byte
boundaries. The arrays contain only one 0x00, in the last byte. d and s are not necessarily distinct.

void our_strcpy(uint8_t *d, uint8_t *s) {
 char c;
 do {
 c = *s;
 *d = c;
 s++; d++;
 } while (c);
}

b) What is the lowest possible cache hit rate for our_strcpy? ______0______

Compulsory and conflict
c) What types of misses are there? __

d) What is the smallest possible value of (d – s) that would get this hit rate? ______1 KiB______

e) What is the highest possible cache hit rate for our_strcpy? ____31/32________

f) What is one possible value of (d – s) where we would get this hit rate? ______0______

2 misses per block * 2^6 blocks/cache * 2^13 caches = 2^20 misses
g) If we ran our_strcpy with a 4-way set-associative LRU cache, and

the size of both d and s is 8MiB, what is the most # of misses possible? ______1 Mebi______

Show all your work here!

Question 4: A bad case of Not Invented Here Syndrome... (24 min, 15 pts)
a) A colleague of yours has implemented some homebrew C99 string manipulation functions, while

steadfastly refusing to use any standard libraries, but they’re buggy! We've marked each
potentially problematic line with // <number>. Your job is to fill in a correct replacement line in the
corresponding row of the following table, or write 'OK' if there is nothing wrong. DO NOT LEAVE
ANY FIELDS BLANK, or we will assume you just didn't get to this part of the exam.

Line number Replacement Code

1
for(char c = *s; (c = *s) != '\0'; s++) {

2
*s += 'a' – 'A';

3
OK

4
OK

5
odds += numbers[i] & 1 … odds += *(numbers+i) & 1

/** Converts the string S to lowercase */
void string_to_lowercase(char *s) {
 for(char c = *s; c != '\0'; s++) { // 1
 if(c >= 'A' && c <= 'Z') {
 s += 'a' - 'A'; // 2
 }
 }
}

/** Returns the number of bytes in S before, but not counting, the null terminator. */
size_t string_length(char *s) {
 char *s2 = s;
 while(*s2++); // 3
 return s2 - s - 1; // 4
}

/** Return the number of odd numbers in a number array */
uint32_t number_odds(uint32_t *numbers, uint32_t size) {
 uint32_t odds = 0;
 for (uint32_t i = 0; i < size; i++)
 odds += *numbers+i && 1; // 5
 return odds;
}

