
Math 1B. Solutions to the Final Exam

1. (16 points) Suppose that |f ′′(x)| ≤ K for all a ≤ x ≤ b . If ET is the error involved

in using the Trapezoidal Rule for computing
∫ b
a
f(x) dx with n subintervals, then

|ET | ≤
K(b− a)3

12n2
.

Using this bound, what is the smallest value of n that will guarantee that the Trape-

zoidal approximation for

∫ 3

1

x3 dx is accurate to within 1/6 ? (Your answer should be

an integer.)

Since f(x) = x3 , we have f ′′(x) = 6x . On the interval [1, 3] , the maximum of
|f ′′(x)| = |6x| occurs at x = 3 , so we can take K = 18 . We also have a = 1 and
b = 3 , so the error bound is

|ET | ≤
18 · 23

12n2
=

3 · 23

2n2
=

3 · 22

n2
=

12

n2
.

This needs to be smaller than 1/6 , so:

12

n2
≤ 1

6
;

6 · 12 ≤ n2 ;

72 ≤ n2 .

If n = 8 then n2 = 64 , which is not big enough, but if n = 9 then n2 = 81 , which is
big enough.

Therefore the smallest possible value of n is n = 9 .

2. (16 points) Find the area of the surface generated by rotating the curve

y = 5− x2

2
, 1 ≤ x ≤ 2 ,

about the y-axis.

Let f(x) = 5− x2

2 . Then f ′(x) = −x , and therefore ds =
√

1 + x2 dx . Therefore
the area of the surface is ∫ b

a

2πx ds = 2π

∫ 2

1

x
√

1 + x2 dx

= π

∫ 5

2

√
u du

=
2

3
πu3/2

∣∣∣5
2

=
2π

3

(
5
√

5− 2
√

2
)
.

(Here we used a substitution u = 1 + x2 , du = 2x dx .)
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3. (20 points) Determine whether the series

∞∑
n=3

1

n(lnn)(ln(lnn))

is absolutely convergent, conditionally convergent, or divergent.

Since e < 3 , we have ln(lnx) > ln(ln e) = ln 1 = 0 , so the functions lnx and
ln(lnx) are positive and increasing on the interval [3,∞) . In particular, the denom-
inator of f(x) = 1

x(ln x)(ln(ln x)) is positive and increasing on [3,∞) , and so f(x) is

positive and decreasing on that interval.
Therefore, we can apply the Integral Test on that interval.
Since the Integral Test involves a substitution in an improper integral, it is best

to do the indefinite integral first. Using the substitutions u = lnx , du = dx/x and
v = lnu , dv = du/u , we have∫

dx

x(lnx)(ln(lnx))
=

∫
du

u(lnu)
=

∫
dv

v
= ln |v|+ C = ln(ln(lnx)) + C .

Therefore ∫ ∞
3

dx

x(lnx)(ln(lnx))
= lim
t→∞

∫ t

3

dx

x(lnx)(ln(lnx))

= lim
t→∞

ln(ln(lnx))
∣∣∣t
3

= lim
t→∞

(
ln(ln(ln t))− ln(ln(ln 3))

)
=∞ .

Since this improper integral diverges, the original series also diverges, by the Integral
Test.

4. (18 points) Determine whether the series

∞∑
n=1

((
1 +

1

n

)π
− 1− π

n

)√
n

is absolutely convergent, conditionally convergent, or divergent.

By the binomial series,(
1 +

1

n

)π
= 1 + π

(
1

n

)
+

(
π

2

)(
1

n

)2

+

(
π

3

)(
1

n

)3

+ . . . ;
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therefore the nth term in the series in the problem (call it an ) is

an =

∞∑
m=2

(
π

m

)(
1

n

)m−1/2
.

Since the dominant term (for n large) in the above series is the first term, this says

that an behaves like
(
π
2

)(
1
n

)3/2
, so it makes sense to try using the Limit Comparison

Test with the convergent p-series
∑

1
n3/2 . We have

lim
n→∞

an
n3/2

= lim
n→∞

( ∞∑
m=2

(
π

m

)(
1

n

)m−2)

= lim
x→0

( ∞∑
m=2

(
π

m

)
xm−2

)

=

(
π

2

)
=
π(π − 1)

2
6= 0 ,

where we let x = 1/n . Since the series
∑

1/n3/2 converges, so does the series given
in the problem. Also, the series converges absolutely, because (for large enough n ), all
of the terms are positive.

5. (22 points) Find the Maclauren series for ln

(
1 + x

1− x

)
, and determine its radius of

convergence and interval of convergence.

[Hint: Use a property of logarithms.]

Using a property of logarithms, and the given series for ln(1 + x) ,

ln

(
1 + x

1− x

)
= ln(1 + x)− ln(1− x)

=
∞∑
n=1

(−1)n−1
xn

n
+
∞∑
n=1

xn

n
.

When n is even, the terms cancel. This leaves only the odd terms, so we have

ln

(
1 + x

1− x

)
= 2

∞∑
k=0

x2k+1

2k + 1
. (*)

The radius of convergence for the series for ln(1 + x) is R = 1 , so it converges for all
x ∈ (−1, 1) . If we replace x with −x (as was done to get the series for ln(1 − x) ),
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the resulting series still converges for all x ∈ (−1, 1) (because if x ∈ (−1, 1) , then
−x ∈ (−1, 1) , too).

Therefore the series (*) converges for all x ∈ (−1, 1) , and its radius of convergence
is at least 1 .

On the other hand, when x = 1 , the series (*) simplifies to

∞∑
n=1

2

2k + 1
.

This series diverges, by using the limit comparison test with the harmonic series∑
(1/k) . This implies that the radius of convergence is at most 1 , so R = 1 for

the series (*). Also, x = 1 is not in the interval of convergence. When x = −1 , we
get minus the series for x = 1 , so it also diverges.

Therefore the interval of convergence is (−1, 1) .

6. (18 points) (a). Use Euler’s method with step size 0.5 to estimate y(1.5) , where y(x)
is the solution of the initial-value problem

y′ = tan−1(2x+ y) , y(0) = 0 .

The computation is as follows:

n xn yn

0 0 0
1 0.5 0 + 0.5 tan−1(2 · 0 + 0) = 0
2 1.0 0 + 0.5 tan−1(2 · 0.5 + 0) = 1

2 tan−1 1 = π
8

3 1.5 π
8 + 0.5 tan−1

(
2 · 1 + π

8

)
So the estimate for y(1.5) is

y(1.5) ≈ π

8
+

1

2
tan−1

(
2 +

π

8

)
.

(b). Is your estimate for y(0.5) larger or smaller than the actual value of y(0.5) ?
Explain.

[Hint: Is the graph of y(x) concave up or down? You may assume that y(x) > −2x
for all x > 0 .]

To determine concavity, we look at y′′(x) in the interval 0 ≤ x ≤ 0.5 . To find
y′′ , differentiate both sides of the differential equation:

y′′ =
d

dx
tan−1(2x+ y)

=
2 + y′

(2x+ y)2 + 1

=
2 + tan−1(2x+ y)

(2x+ y)2 + 1
.
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The denominator is always positive, and the numerator is likewise positive because the
given fact that y > −2x implies that 2x+ y > 0 , so tan−1(2x+ y) > 0 .

Therefore the graph of y(x) is concave upward. Since Euler’s method uses the
tangent line to the graph, the actual value of y(0.5) will be larger than the estimate
using Euler’s method.

Alternative method (unanticipated): The estimated value for y(0.5) is 0 , so we
only need to know that y(0.5) > 0 . But, from the given inequality y > −2x , we
have 2x + y > 0 for all x in (0, 0.5) , so y′ = tan−1(2x + y) is positive on this
interval. Therefore y(x) is increasing on this interval. Since y(0) = 0 , this implies
that y(0.5) > 0 , so our estimate is smaller than the actual value.

7. (22 points) Find all solutions of the differential equation

y′ = sinx cos2 y .

Express your solutions in the form y = . . . if possible.

This is a separable differential equation, so we solve it by separating variables and
integrating:

dy

dx
= sinx cos2 y

dy

cos2 y
= sinx dx (cos y 6= 0)∫

sec2 y dy =

∫
sinx dx

tan y = − cosx+ C

y = tan−1(C − cosx) + nπ , n ∈ Z .

If cos y = 0 , then y = π
2 + nπ , n ∈ Z , so these are equilibrium (constant) solutions.

All together, the solutions are:

y = tan−1(C − cosx) + nπ , n ∈ Z

and y =
π

2
+ nπ , n ∈ Z .
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8. (20 points) Solve the initial-value problem

y′ +
y

x
= 2 , y(6) = 2 .

This is a linear equation. The integrating factor is

I(x) = e
∫
dx/x = eln x = x ;

multiplying both sides of the differential equation by this factor gives

xy′ + y = 2x ;

(xy)′ = 2x ;

xy = x2 + C ;

y = x+
C

x
.

This is the general solution. To solve the initial-value problem, plug in x = 6 and
y = 2 to the equation xy = x2 +C to get 12 = 36 +C , so C = −24 and the solution
is

y = x− 24

x
.

9. (20 points) For each of the following differential equations, write a trial solution for
finding yp using the Method of Undetermined Coefficients.

(Do not solve for the coefficients.)

(a). y′′ − 3y′ + 2y = xex + ex cosx

The auxiliary equation is r2 − 3r + 2 = 0 , which has roots r = 1 and r = 2 .
Therefore the general solution to the complementary equation is

yc = c1e
x + c2e

2x ,

and the form of the trial solution is

yp = (Ax2 +Bx)ex + ex(C cosx+D sinx) .

(b). y′′ − 2y′ + y = xex

Here the auxiliary equation is r2 − 2r + 1 = 0 , which has the double root r = 1 .
Therefore yc = (c1x+ c2)ex , and the form of yp is

yp = (Ax3 +Bx2)ex .

(c). y′′ − 2y′ + 2y = ex + cosx

Here the auxiliary equation is r2 − 2r + 2 = 0 . Solving it (using the quadratic
equation) gives r = 1 ± i , so yc = ex(c1 cosx + c2 sinx) , and the form of the trial
solution for yp is

yp = Aex +B cosx+ C sinx .
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10. (25 points) Find the general solution of the differential equation

y′′ + y = tanx secx .

The auxiliary equation is r2 + 1 = 0 , which has roots r = ±i . Therefore the
general solution of the complementary equation is

yc = c1 cosx+ c2 sinx .

The right-hand side of the differential equation is not of the form for which the Method
of Undetermined Coefficients can be used, so we need to use the Method of Variation
of Parameters. This means looking for a solution of the form

yp = u1 cosx+ u2 sinx .

The equations to be solved are

(cosx)u′1 + (sinx)u′2 = 0 ,

(− sinx)u′1 + (cosx)u′2 = tanx secx .

Multiplying the first equation by sinx and the second by cosx and adding gives

(sin2 x+ cos2 x)u′2 = tanx secx cosx ;

u′2 = tanx .

From the first equation, we then have

u′1 = − sinx

cosx
u′2 = − tan2 x .

Therefore

u1 =

∫
(1− sec2 x) dx = x− tanx and u2 =

∫
tanx dx = ln | secx|

(we’re just looking for a particular solution, so a constant of integration is not needed).
The general solution is then

y = (x− tanx) cosx+ (ln | secx|) sinx+ c1 cosx+ c′2 sinx

= x cosx+ (sinx) ln | secx|+ c1 cosx+ c2 sinx

(where c′2 − 1 = c2 ).
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11. (28 points) Use power series to solve the initial-value problem

y′′ − xy′ − y = 0 , y(0) = 1 , y′(0) = 0 .

(You do not need to check that your answer converges.)

Let y =
∑∞
n=0 cnx

n ; then y′ =
∑∞
n=1 ncnx

n−1 , and we have

y′′ =

∞∑
n=2

n(n− 1)cnx
n−2 and − xy′ = −

∞∑
n=1

ncnx
n .

We can start the sum for xy′ at n = 0 instead of n = 1 without throwing in any
terms since the n = 0 term is zero. Also, we can shift the indices for the series for y′′

by replacing n with n+ 2 . This gives

y′′ =

∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n ;

−xy′ = −
∞∑
n=0

ncnx
n ;

−y = −
∞∑
n=0

cnx
n .

Adding these series then gives
∞∑
n=0

((n+ 2)(n+ 1)cn+2 − ncn − cn)xn = 0 .

Setting each coefficient equal to zero then gives

(n+ 2)(n+ 1)cn+2 − (n+ 1)cn = 0 ;

cn+2 =
cn

n+ 2
.

This is our recursion relation, valid for all n ≥ 0 . (Note that dividing by n+ 1 never
resulted in dividing by zero.)

The first several coefficients are therefore:

from the initial condition y(0) = 1 c0 = 1

from the initial condition y′(0) = 0: c1 = 0

from the recursion relation with n = 0: c2 =
c0
2

=
1

2

setting n = 1: c3 =
c1
3

= 0

setting n = 2: c4 =
c2
4

=
1/2

4
=

1

2 · 4
setting n = 3: c5 =

c3
5

= 0

setting n = 4: c6 =
c4
6

=
1

2 · 4 · 6
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The pattern is now apparent: cn = 0 if n is odd, and

cn =
1

2 · 4 · . . . · n
=

1

2k(k!)

if n = 2k is even.
Therefore the solution is

y =

∞∑
k=0

x2k

2k(k!)
.


