Math 1B. Solutions to the Second Midterm

(16 points) Find the first four terms of the Maclauren series for

COS T

I@ = i +a)

Note that you may want to find this in a manner other than by direct differentiation
of the function.

From the formulas on the front of the exam, we have
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The first four terms go up to the 2% term. Since both of the above series have

nonzero constant term, we can find the answer, valid up to the z3 term, by long division
ignoring all terms past the x® term:
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(18 points) (a). Find T5(z), the degree 2 Taylor polynomial of the function f(z) = /x
at a =100.

We have
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and therefore

1) = f(a) + L0 @)+ T 0 a2
1 1 ,
= 10+ 5 (¢ = 100) = = (@ = 100)?.

(b). How accurate is the approximation T5(z) ~ +/x when 99.9 < 2 < 100.17

We use Taylor’s Inequality with n =2 and d = 0.1. We have

f(nJrl)(x) _ fm(.ilf) _ 21‘75/2 )

On the interval [99.9,100.1] this has its maximum absolute value at = = 99.9, so we

can take
3
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Therefore,
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(18 points) Find the partial fraction decomposition of

x3 4 2z 3+ 2z

B4+1 (z+1)(22-2+1)"

First, note that the fraction is not a proper fraction:

x5+ 2z 20 — 1

B3+1 +x3+1'

Given that the denominator z3 + 1 factors as (z + 1)(z? —z + 1) (and that the
quadratic factor has no real roots), the form of the partial fraction decomposition is as
below.

Clearing denominators in the equation

2r -1 A n Bx +C
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gives
22 —1=A(x? —z+ 1)+ (Bx +C)(x +1) .
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Next, we plug some values into this equality in order to get equations in the unknowns
A, B,and C:

=0 = A+C =-1
=1 o A+2B+2C =1.

The first equation gives A = —1; using this, the second equation gives C' = 0; finally,
using these two values, the third equation gives B = 1. Therefore, the partial fraction
decomposition is
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18 points) Find —_—
(18 p ) x2V/z? 44

Substitute z = 2tan@. Then dzr = 2sec?6df and

\/:L'2 +4 = \/4tan29—|—4 = 2\/tan29+ 1 =2sech.
You can also see the latter by drawing a right triangle:
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The integral is then
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(Here we used the triangle to get the next to last line.)
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(15 points) (a). Find the arc length of the curve y:x——%, 1<z<3.
First, we have
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so the arc length is
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(b). Find the arc length function for this curve, with starting point (1,1/2).

The integrand is the same as in part (a), except that x is changed to ¢. The arc
length function is:
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(15 points) A lamina with uniform density 2 g/cm? occupies the region in the zy-plane

bounded by the curves y = 22, y = 9z, and = = 3. Here = and y are measured in
cm.

Find the moments of the lamina with respect to the z- and y-axes.

(Actually, there are two regions bounded by the indicated curves:
x2§y§9:17, 0<xz<3 and $2§y§9x, 3<x<9.

We will give the answer for the first region. The answer for the other region is computed
by integrating the same integrands from 3 to 9.)
The moment with respect to the y-axis is
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and the moment with respect to the z-axis is
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