
Math 1B. Solutions to the First Midterm

1. (7 points) Find

∫ √
x lnx dx .

Do integration by parts with:

u = lnx dv =
√
x dx

du = dx
x v = 2

3x
3/2

This gives ∫ √
x lnx dx =

2

3
x3/2 lnx− 2

3

∫
x3/2 dx

x

=
2

3
x3/2 lnx− 2

3

∫ √
x dx

=
2

3
x3/2 lnx− 4

9
x3/2 + C .

2. (10 points) For n ≥ 2 let an =
(
1 + 1

22

) (
1 + 1

32

)
· · ·
(
1 + 1

n2

)
.

(a). Given that the sequence {an} is bounded above, explain why it converges.
(You do not need to find the limit.)

The an are all positive, hence bounded below (by zero).

This is an increasing sequence, because an+1 = an

(
1 + 1

(n+1)2

)
> an (since

1 + 1
(n+1)2 > 1 ).

Therefore, by the Monotonic Sequence Theorem, the sequence converges.

(b). Show that {an} is in fact bounded above. [Hint: Look at ln an .]

We have

ln an = ln

n∏
k=1

(
1 +

1

k2

)
=

n∑
k=1

ln

(
1 +

1

k2

)
.

Therefore, ln an is the nth partial sum of the series
∑∞

n=1 ln
(
1 + 1

n2

)
. This series

converges by the Limit Comparison Test, comparing it with the convergent p-series∑
1/n2 :

lim
n→∞

ln
(
1 + 1

n2

)
1
n2

= lim
n→∞

− 2
n3

1+ 1
n2

− 2
n3

= lim
n→∞

1

1 + 1
n2

= 1 .

If we let L =
∑∞

n=1 ln
(
1 + 1

n2

)
, then ln an < L for all n , because each term in the

series
∑

ln(1 + 1/k2) is positive, so all partial sums are less than the total sum L .
This shows that the sequence {an} is bounded above, by eL .
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3. (6 points) If
∑

an and
∑

bn are both divergent, is
∑

(an + bn) necessarily divergent?
(If yes, briefly explain why, mentioning theorems from the book as appropriate. If no,
give an example that illustrates why it is not always true.)

No, it could converge. For example, if an = 1 and bn = −1 for all n , then
both series

∑
an and

∑
bn diverge (by the Test for Divergence), but the series∑

(an + bn) =
∑

(1− 1) =
∑

0 converges.
(This is Exercise 84 on page 713, which was among the assigned written exercises.)

4. (9 points) Determine whether the series

∞∑
n=1

(
2− sinn

4

)n

is absolutely convergent,

conditionally convergent, or divergent.

The terms are all positive, since 1 ≤ 2− sinn ≤ 3 for all n . Also,(
2− sinn

4

)n

≤
(

3

4

)n

for all n . Since the series
∑

(3/4)n is a convergent geometric series, the original series
converges by the Comparison Test.

It converges absolutely, because all of its terms are positive.

5. (9 points) Determine whether the series

∞∑
n=2

(−1)n

n lnn
is absolutely convergent, condition-

ally convergent, or divergent.

Let

bn =
1

n lnn
.

The denominator is positive and increasing, so bn > 0 for all n and {bn} is a decreasing
sequence. Also, n lnn → ∞ as n → ∞ , so bn → 0 as n → ∞ . Therefore, by the
Alternating Series Test, the series converges.

To check for absolute convergence, we use the Integral Test. The function 1/(x lnx)
is positive and decreasing for all x ≥ 2 , so we can apply this test. Using the substitution
u = lnx , du = dx/x , we have:∫

dx

x lnx
=

∫
du

u
= ln |u|+ C = ln(lnx) + C ,

so ∫ ∞
2

dx

x lnx
= lim

t→∞

∫ t

2

dx

x lnx
= lim

t→∞
(ln(ln t)− ln(ln 2)) =∞ .

Since this limit diverges, so does the series
∑

bn .
Therefore the series in the question converges conditionally.
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6. (9 points) Determine whether the series

∞∑
n=1

n! · n2

1 · 3 · · · · · (2n− 1)
is absolutely conver-

gent, conditionally convergent, or divergent.

We apply the Ratio Test. Since 2(n + 1)− 1 = 2n + 2− 1 = 2n + 1 ,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+1)!(n+1)2

1·3·····(2n+1)

n!·n2

1·3·····(2n−1)

= lim
n→∞

(
(n + 1)!

n!
· (n + 1)2

n2
· 1 · 3 · · · · · (2n− 1)

1 · 3 · · · · · (2n + 1)

)
= lim

n→∞

(
(n!)(n + 1)

n!
· (n + 1)2

n2
· 1 · 3 · · · · · (2n− 1)

1 · 3 · · · · · (2n− 1)(2n + 1)

)
= lim

n→∞

(
(n + 1) · (n + 1)2

n2
· 1

2n + 1

)
= lim

n→∞

(n + 1)3

n2(2n + 1)

= lim
n→∞

(1 + 1/n)3

2 + 1/n

=
1

2
.

Since this limit is < 1 , the series converges absolutely.


