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Q1. [14 pts] Bayes Nets and Joint Distributions
(a) [2 pts] Write down the joint probability distribution associated with the following Bayes Net. Express the

answer as a product of terms representing individual conditional probabilities tables associated with this Bayes
Net:

A B

C D

E

(b) [2 pts] Draw the Bayes net associated with the following joint distribution:
P (A) · P (B) · P (C|A,B) · P (D|C) · P (E|B,C)

A B

C D

E

(c) [3 pts] Do the following products of factors correspond to a valid joint distribution over the variables A,B,C,D?
(Circle TRUE or FALSE.)

(i) TRUE FALSE P (A) · P (B) · P (C|A) · P (C|B) · P (D|C)

(ii) TRUE FALSE P (A) · P (B|A) · P (C) · P (D|B,C)

(iii) TRUE FALSE P (A) · P (B|A) · P (C) · P (C|A) · P (D)

(iv) TRUE FALSE P (A|B) · P (B|C) · P (C|D) · P (D|A)
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(d) What factor can be multiplied with the following factors to form a valid joint distribution? (Write “none” if
the given set of factors can’t be turned into a joint by the inclusion of exactly one more factor.)

(i) [2 pts] P (A) · P (B|A) · P (C|A) · P (E|B,C,D)

(ii) [2 pts] P (D) · P (B) · P (C|D,B) · P (E|C,D,A)

(e) Answer the next questions based off of the Bayes Net below:
All variables have domains of {-1, 0, 1}

A

D E

B

F

C

G

(i) [1 pt] Before eliminating any variables or including any evidence, how many entries does the factor at G
have?

(ii) [2 pts] Now we observe e = 1 and want to query P (D|e = 1), and you get to pick the first variable to be
eliminated.

• Which choice would create the largest factor f1?

• Which choice would create the smallest factor f1?

4



Q2. [8 pts] Pacman’s Life
Suppose a maze has height M and width N and there are F food pellets at the beginning. Pacman can move North,
South, East or West in the maze.

(a) [4 pts] In this subquestion, the position of Pacman is known, and he wants to pick up all F food pellets in the
maze. However, Pacman can move North at most two times overall.

What is the size of a minimal state space for this problem? Give your answer as a product of terms that
reference problem quantities such as (but not limited to) M,N,F , etc. Below each term, state the information
it encodes. For example, you might write 4 ×MN and write number of directions underneath the first term
and Pacman’s position under the second.

(b) [4 pts] In this subquestion, Pacman is lost in the maze, and does not know his location. However, Pacman still
wants to visit every single square (he does not care about collecting the food pellets any more). Pacman’s task
is to find a sequence of actions which guarantees that he will visit every single square.

What is the size of a minimal state space for this problem? As in part(a), give your answer as a product of
terms along with the information encoded by each term. You will receive partial credit for a complete but
non-minimal state space.
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Q3. [13 pts] MDPs: Dice Bonanza
A casino is considering adding a new game to their collection, but need to analyze it before releasing it on their floor.
They have hired you to execute the analysis. On each round of the game, the player has the option of rolling a fair
6-sided die. That is, the die lands on values 1 through 6 with equal probability. Each roll costs 1 dollar, and the
player must roll the very first round. Each time the player rolls the die, the player has two possible actions:

1. Stop: Stop playing by collecting the dollar value that the die lands on, or

2. Roll: Roll again, paying another 1 dollar.

Having taken CS 188, you decide to model this problem using an infinite horizon Markov Decision Process (MDP).
The player initially starts in state Start, where the player only has one possible action: Roll. State si denotes the
state where the die lands on i. Once a player decides to Stop, the game is over, transitioning the player to the End
state.

(a) [4 pts] In solving this problem, you consider using policy iteration. Your initial policy π is in the table below.
Evaluate the policy at each state, with γ = 1.

State s1 s2 s3 s4 s5 s6

π(s) Roll Roll Stop Stop Stop Stop

V π(s)

(b) [4 pts] Having determined the values, perform a policy update to find the new policy π′. The table below shows
the old policy π and has filled in parts of the updated policy π′ for you. If both Roll and Stop are viable new
actions for a state, write down both Roll/Stop. In this part as well, we have γ = 1.

State s1 s2 s3 s4 s5 s6

π(s) Roll Roll Stop Stop Stop Stop

π′(s) Roll Stop
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(c) [2 pts] Is π(s) from part (a) optimal? Explain why or why not.

(d) [3 pts] Suppose that we were now working with some γ ∈ [0, 1) and wanted to run value iteration. Select the
one statement that would hold true at convergence, or write the correct answer next to Other if none of the
options are correct.

# V ∗(si) = max

−1 +
i

6
,
∑
j

γV ∗(sj)


# V ∗(si) = max

i , 1

6
·

−1 +
∑
j

γV ∗(sj)


# V ∗(si) = max

−1

6
+ i ,

∑
j

γV ∗(sj)


# V ∗(si) = max

i , −1

6
+
∑
j

γV ∗(sj)


# V ∗(si) =

1

6
·
∑
j

max {i , −1 + γV ∗(sj)}

# V ∗(si) =
1

6
·
∑
j

max

{
−1 + i ,

∑
k

V ∗(sj)

}

# V ∗(si) =
∑
j

max

{
−1 + i ,

1

6
· γV ∗(sj))

}

# V ∗(si) =
∑
j

max

{
i

6
, −1 + γV ∗(sj)

}

# V ∗(si) = max

i , −1 +
γ

6

∑
j

V ∗(sj)


# V ∗(si) =

∑
j

max

{
i , −1

6
+ γV ∗(sj)

}

# V ∗(si) =
∑
j

max

{
−i
6

, −1 + γV ∗(sj)

}

# Other
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Q4. [12 pts] MDPs: Value Iteration
An agent lives in gridworld G consisting of grid cells s ∈ S, and is not allowed to move into the cells colored black.
In this gridworld, the agent can take actions to move to neighboring squares, when it is not on a numbered square.
When the agent is on a numbered square, it is forced to exit to a terminal state (where it remains), collecting a
reward equal to the number written on the square in the process.

Gridworld G

You decide to run value iteration for gridworld G. The value function at iteration k is Vk(s). The initial value for all
grid cells is 0 (that is, V0(s) = 0 for all s ∈ S). When answering questions about iteration k for Vk(s) , either answer
with a finite integer or ∞. For all questions, the discount factor is γ = 1.

(a) Consider running value iteration in gridworld G. Assume all legal movement actions will always succeed
(and so the state transition function is deterministic).

(i) [2 pts] What is the smallest iteration k for which Vk(A) > 0? For this smallest iteration k, what is the
value Vk(A)?

k = Vk(A) =

(ii) [2 pts] What is the smallest iteration k for which Vk(B) > 0? For this smallest iteration k, what is the
value Vk(B)?

k = Vk(B) =

(iii) [2 pts] What is the smallest iteration k for which Vk(A) = V ∗(A)? What is the value of V ∗(A)?

k = V ∗(A) =

(iv) [2 pts] What is the smallest iteration k for which Vk(B) = V ∗(B)? What is the value of V ∗(B)?

k = V ∗(B) =

(b) [4 pts] Now assume all legal movement actions succeed with probability 0.8; with probability 0.2, the action
fails and the agent remains in the same state.
Consider running value iteration in gridworld G. What is the smallest iteration k for which Vk(A) = V ∗(A)?
What is the value of V ∗(A)?

k =

V ∗(A) =
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Q5. [8 pts] Q-learning
Consider the following gridworld (rewards shown on left, state names shown on right).

Rewards State names

From state A, the possible actions are right(→) and down(↓). From state B, the possible actions are left(←) and
down(↓). For a numbered state (G1, G2), the only action is to exit. Upon exiting from a numbered square we collect
the reward specified by the number on the square and enter the end-of-game absorbing state X. We also know that
the discount factor γ = 1, and in this MDP all actions are deterministic and always succeed.

Consider the following episodes:

Episode 1 (E1)

s a s′ r
A ↓ G1 0
G1 exit X 10

Episode 2 (E2)

s a s′ r
B ↓ G2 0
G2 exit X 1

Episode 3 (E3)

s a s′ r
A → B 0
B ↓ G2 0
G2 exit X 1

Episode 4 (E4)

s a s′ r
B ← A 0
A ↓ G1 0
G1 exit X 10

(a) [4 pts] Consider using temporal-difference learning to learn V (s). When running TD-learning, all values are
initialized to zero.
For which sequences of episodes, if repeated infinitely often, does V (s) converge to V ∗(s) for all states s?

(Assume appropriate learning rates such that all values converge.)
Write the correct sequence under “Other” if no correct sequences of episodes are listed.

� E1, E2, E3, E4 � E1, E2, E1, E2 � E1, E2, E3, E1 � E4, E4, E4, E4
� E4, E3, E2, E1 � E3, E4, E3, E4 � E1, E2, E4, E1

� Other

(b) [4 pts] Consider using Q-learning to learn Q(s, a). When running Q-learning, all values are initialized to zero.
For which sequences of episodes, if repeated infinitely often, does Q(s, a) converge to Q∗(s, a) for all state-action
pairs (s, a)

(Assume appropriate learning rates such that all Q-values converge.)
Write the correct sequence under “Other” if no correct sequences of episodes are listed.

� E1, E2, E3, E4 � E1, E2, E1, E2 � E1, E2, E3, E1 � E4, E4, E4, E4
� E4, E3, E2, E1 � E3, E4, E3, E4 � E1, E2, E4, E1

� Other
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Q6. [9 pts] Utilities
PacLad and PacLass are arguing about the value of eating certain numbers of pellets. Neither knows their exact
utility functions, but it is known that they are both rational and that PacLad prefers eating more pellets to eating
fewer pellets. For any n, let En be the event of eating n pellets. So for PacLad, if m ≥ n, then Em � En. For any n
and any k < n, let Ln±k refer to a lottery between En−k and En+k, each with probability 1

2 .
Reminder: For events A and B, A ∼ B denotes that the agent is indifferent between A and B, while A � B denotes
that A is preferred to B.

(a) [2 pts] Which of the following are guaranteed to be true? Circle TRUE or FALSE accordingly.

(i) TRUE FALSE Under PacLad’s preferences, for any n, k, Ln±k ∼ En.

(ii) TRUE FALSE Under PacLad’s preferences, for any k, if m ≥ n, then Lm±k � Ln±k.

(iii) TRUE FALSE Under PacLad’s preferences, for any k, l, if m ≥ n, then Lm±k � Ln±l.

(b) To decouple from the previous part, suppose we are given now that under PacLad’s preferences, for any n, k,
Ln±k ∼ En. Suppose PacLad’s utility function in terms of the number of pellets eaten is U1. For each of the
following, suppose PacLass’s utility function, U2, is defined as given in terms of U1. Choose all statements
which are guaranteed to be true of PacLass’s preferences under each definition. If none are guaranteed to be
true, choose “None.” You should assume that all utilities are positive (greater than 0).

(i) [2 pts] U2(n) = aU1(n) + b for some positive integers a, b

� L4±1 ∼ L4±2 � E4 � E3 � L4±1 � E4 � None

(ii) [2 pts] U2(n) = 1
U1(n)

� L4±1 ∼ L4±2 � E4 � E3 � L4±1 � E4 � None

PacLass is in a strange environment trying to follow a policy that will maximize her expected utility. Assume that
U is her utility function in terms of the number of pellets she receives.

In PacLass’s environment, the probability of ending up in state s′ after taking action a from state s is T (s, a, s′).
At every step, PacLass finds a locked chest containing C(s, a, s′) pellets, and she can either keep the old chest she
is carrying or swap it for the new one she just found. At a terminal state(but never before) she receives the key to
open the chest she is carrying and gets all the pellets inside. Each chest has the number of pellets it contains written
on it, so PacLass knows how many pellets are inside without opening each chest.

(c) [3 pts] Which is the appropriate Bellman equation for PacLass’s value function? Write the correct answer next
to ‘Other’ if none of the listed options are correct.

# V ∗(s) = maxa
∑
s′ T (s, a, s′)[U(C(s, a, s′)) + V ∗(s′)]

# V ∗(s) = maxa
∑
s′ T (s, a, s′)U(C(s, a, s′) + V ∗(s′))

# V ∗(s) = maxa
∑
s′ T (s, a, s′) max {U(C(s, a, s′)), V ∗(s′)}

# V ∗(s) = maxa
∑
s′ T (s, a, s′) max {U(C(s, a, s′)), U(V ∗(s′))}

# V ∗(s) = maxa
∑
s′ T (s, a, s′)U (max {C(s, a, s′), V ∗(s′)})

# V ∗(s) = maxa
∑
s′ T (s, a, s′)U (max {U(C(s, a, s′)), V ∗(s′)})

# Other
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Q7. [17 pts] CSPs with Preferences
Let us formulate a CSP with variables A, B, C, D, and domains of {1, 2, 3} for each of these variables. A valid
assignment in this CSP is defined as a complete assignment of values to variables which satisfies the following
constraints:

1. B will not ride in car 2.

2. A and B refuse to ride in the same car.

3. The sum of the car numbers for B and C is less than 4.

4. A’s car number must be greater than C’s car number.

5. B and D refuse to ride in the same car.

6. C’s car number must be lesser than D’s car number.

(a) [2 pts] Draw the corresponding constraint graph for this CSP.

A B

C D

Although there are several valid assignments which exist for this problem, A, B, C and D have additional “soft”
preferences on which value they prefer to be assigned. To encode these preferences, we define utility functions
UV ar(V al) which represent how preferable an assignment of the value(Val) to the variable(Var) is.

For a complete assignment P = {A : VA, B : VB , ....D : VD}, the utility of P is defined as the sum of the utility
values: UA(VA) +UB(VB) +UC(VC) +UD(VD). A higher utility for P indicates a higher preference for that complete
assignment. This scheme can be extended to an arbitrary CSP, with several variables and values.

We can now define a modified CSP problem, whose goal is to find the valid assignment which has the maximum
utility amongst all valid assignments.

(b) [2 pts] Suppose the utilities for the assignment of values to variables is given by the table below

U UA UB UC UD

1 7 10 200 2000
2 6 20 300 1000
3 5 30 100 3000

Under these preferences, given a choice between the following complete assignments which are valid solutions
to the CSP, which would be the preferred solution.

# A:3 B:1 C:1 D:2

# A:3 B:1 C:2 D:3

# A:2 B:1 C:1 D:2

# A:3 B:1 C:1 D:3
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To decouple from the previous questions, for the rest of the question, the preference utilities are not necessarily the
table shown above but can be arbitrary positive values.

This problem can be formulated as a modified search problem, where we use the modified tree search shown below
to find the valid assignment with the highest utility, instead of just finding an arbitrary valid assignment.

The search formulation is:

• State space: The space of partial assignments of values to variables

• Start state: The empty assignment

• Goal Test: State X is a valid assignment

• Successor function: The successors of a node X are states which have partial assignments which are the
assignment in X extended by one more assignment of a value to an unassigned variable, as long as this assignment
does not violate any constraints

• Edge weights: Utilities of the assignment made through that edge

In the algorithm below f(node) is an estimator of distance from node to goal, Accumulated-Utility-From-Start(node)
is the sum of utilities of assignments made from the start-node to the current node.

function ModifiedTreeSearch(problem, start-node)
fringe← Insert(key : start-node, value : f(start-node))
do

if IsEmpty(fringe) then
return failure

end if
node, cost ← remove entry with maximum value from fringe
if Goal-Test(node) then

return node
end if
for child in Successors(node) do

fringe← Insert(key : child, value : f(child) + Accumulated-Utility-From-Start(child))
end for

while True
end function

(c) Under this search formulation, for a node X with assigned variables {v1, v2....vn} and unassigned variables
{u1, u2, u3...um}
(i) [4 pts] Which of these expressions for f(X) in the algorithm above, is guaranteed to give an optimal

assignment according to the preference utilities. (Select all that apply)

� f1 = minV al1,V al2,...V alm Uu1(V al1) + Uu2(V al2) + ....+ Uum(V alm)

� f2 = maxV al1,V al2,...V alm Uu1
(V al1) + Uu2

(V al2) + ....+ Uum
(V alm)

� f3 = minV al1,V al2,...V alm Uu1
(V al1) + Uu2

(V al2) + .... + Uum
(V alm) such that the complete

assignment satisfies constraints.
� f4 = maxV al1,V al2,...V alm Uu1

(V al1) + Uu2
(V al2) + .... + Uum

(V alm) such that the complete
assignment satisfies constraints.

� f5 = Q, a fixed extremely high value (� sum of all utilities) which is the same across all states

� f6 = 0

(ii) [3 pts] For the expressions for f(X) which guaranteed to give an optimal solution in part(i) among
f1, f2, f3, f4, f5, f6, order them in ascending order of number of nodes expanded by ModifiedTreeSearch.
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(d) In order to make this search more efficient, we want to perform forward checking such that, for every assignment
of a value to a variable, we eliminate values from the domains of other variables, which violate a constraint
under this assignment. Answer the following questions formulating the state space and successor function for
a search problem such that the same algorithm [1] performs forward checking under this formulation.

(i) [3 pts] Briefly describe the minimal state space representation for this problem? (No state space size is
needed, just a description will suffice)

(ii) [3 pts] What is the Successor function for this problem?
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Q8. [19 pts] Game Trees: Friendly Ghost
Consider a two-player game between Pacman and a ghost in which both agents alternate moves. As usual, Pacman
is a maximizer agent whose goal is to win by maximizing his own utility. Unlike the usual adversarial ghost, she is
friendly and helps Pacman by maximizing his utility. Pacman is unaware of this and acts as usual (i.e. as if she is
playing against him). She knows that Pacman is misinformed and acts accordingly.

(a) [7 pts] In the minimax algorithm, the value of each node is determined by the game subtree hanging from that
node. For this version, we instead define a value pair (u, v) for each node:

• u is the value of the subtree as determined by Pacman, who acts to win while assuming that the ghost is
a minimizer agent, and

• v is the value of the subtree as determined by the ghost, who acts to help Pacman win while knowing
Pacman’s strategy.

For example, in the subtree below with values (4, 6), Pacman believes the ghost would choose the left action
which has a value of 4, but in fact the ghost chooses the right action which has a value of 6, since that is better
for Pacman.

For the terminal states we set u = v = Utility(State).

Fill in the remaining (u, v) values in the modified minimax tree below, in which the ghost is the root. The
ghost nodes are upside down pentagons ( ) and Pacman’s nodes are rightside up pentagons ( ).

( , )

( , )

( , )

(2, 2) ( , )

(4, 6)

(4, 4) (6, 6)

(1, 7)

(1, 1) (7, 7)

( , )

(1, 1) ( , )

(0, 6)

(6, 6) (0, 0)

(3, 5)

(3, 3) (5, 5)

( , )

(3, 9)

(3, 3) (9, 9)

(4, 8)

(8, 8) (4, 4)

(b) [3 pts] In the game tree above, put an ‘X’ on the branches that can be pruned and do not need to be explored
when the ghost computes the value of the tree. Assume that the children of a node are visited in left-to-right
order and that you should not prune on equality. Explicitly write down “Not possible” below if no branches
can be pruned, in which case any ‘X’ marks above will be ignored.

(c) [1 pt] What would the value of the game tree be if instead Pacman knew that the ghost is friendly?

Value (i.e. a single number) at the root of the game tree is
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(d) [4 pts] Complete the algorithm below, which is a modification of the minimax algorithm, to work in the original
setting where the ghost is friendly unbeknownst to Pacman. (No pruning in this subquestion)

function Value(state)
if state is leaf then

(u, v)← (Utility(state), Utility(state))
return (u, v)

end if
if state is Ghost-Node then

return Ghost-Value(state)
else

return Pacman-Value(state)
end if

end function

function Ghost-Value(state)
(u, v)← (+∞,−∞)
for successor in Successors(state) do

(u′, v′)← Value(successor)

(i)

(ii)

(u, v)← (ū, v̄)
end for
return (u, v)

end function

function Pacman-Value(state)
(u, v)← (−∞,+∞)
for successor in Successors(state) do

(u′, v′)← Value(successor)

(iii)

(iv)

(u, v)← (ū, v̄)
end for
return (u, v)

end function

Complete the pseudocode by choosing the option that fills in each blank above. The code blocks A1–A8 update
ū and the code blocks B1–B8 update v̄. If any of the code blocks are not needed, the correct answer for that
question must mark the option ‘None of these code blocks are needed’.

A1 if u′ < u then
ū← u′

end if

A2 if u′ < v then
ū← u′

end if

A3 if v′ < u then
ū← u′

end if

A4 if v′ < v then
ū← u′

end if

A5 if u′ > u then
ū← u′

end if

A6 if u′ > v then
ū← u′

end if

A7 if v′ > u then
ū← u′

end if

A8 if v′ > v then
ū← u′

end if

B1 if u′ < u then
v̄ ← v′

end if

B2 if u′ < v then
v̄ ← v′

end if

B3 if v′ < u then
v̄ ← v′

end if

B4 if v′ < v then
v̄ ← v′

end if

B5 if u′ > u then
v̄ ← v′

end if

B6 if u′ > v then
v̄ ← v′

end if

B7 if v′ > u then
v̄ ← v′

end if

B8 if v′ > v then
v̄ ← v′

end if

(i) [1 pt] # A1 # A2 # A3 # A4

# A5 # A6 # A7 # A8 # None of these code blocks are needed

(ii) [1 pt] # B1 # B2 # B3 # B4

# B5 # B6 # B7 # B8 # None of these code blocks are needed

(iii) [1 pt] # A1 # A2 # A3 # A4

# A5 # A6 # A7 # A8 # None of these code blocks are needed

(iv) [1 pt] # B1 # B2 # B3 # B4

# B5 # B6 # B7 # B8 # None of these code blocks are needed
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(e) [4 pts] Complete the algorithm below, which is a modification of the alpha-beta pruning algorithm, to work in
the original setting where the ghost is friendly unbeknownst to Pacman.
We want to compute Value(Root Node, α = −∞, β = +∞). You should not prune on equality.
Hint: you might not need to use α or β, or none of them (e.g. no pruning is possible).

function Value(state, α, β)
if state is leaf then

(u, v)← (Utility(state), Utility(state))
return (u, v)

end if
if state is Ghost-Node then

return Ghost-Value(state, α, β)
else

return Pacman-Value(state, α, β)
end if

end function

function Ghost-Value(state, α, β)
(u, v)← (+∞,−∞)
for successor in Successors(state) do

(u′, v′)← Value(successor, α, β)

... # same as before
(u, v)← (ū, v̄)

(i)

(ii)

end for
return (u, v)

end function

function Pacman-Value(state, α, β)
(u, v)← (−∞,+∞)
for successor in Successors(state) do

(u′, v′)← Value(successor, α, β)

... # same as before
(u, v)← (ū, v̄)

(iii)

(iv)

end for
return (u, v)

end function

Complete the pseudocode by choosing the option that fills in each blank above. The code blocks C1–C8 prune
the search and the code blocks D1–D8 update α and β. If any of the code blocks are not needed, the correct
answer for that question must mark the option ‘None of these code blocks are needed’.

C1 if u < α then
return (u, v)

end if

C2 if v < α then
return (u, v)

end if

C3 if u < β then
return (u, v)

end if

C4 if v < β then
return (u, v)

end if

C5 if u > α then
return (u, v)

end if

C6 if v > α then
return (u, v)

end if

C7 if u > β then
return (u, v)

end if

C8 if v > β then
return (u, v)

end if

D1 α← min(α, u) D2 α← min(α, v) D3 β ← min(β, u) D4 β ← min(β, v)

D5 α← max(α, u) D6 α← max(α, v) D7 β ← max(β, u) D8 β ← max(β, v)

(i) [1 pt] # C1 # C2 # C3 # C4

# C5 # C6 # C7 # C8 # None of these code blocks are needed

(ii) [1 pt] # D1 # D2 # D3 # D4

# D5 # D6 # D7 # D8 # None of these code blocks are needed

(iii) [1 pt] # C1 # C2 # C3 # C4

# C5 # C6 # C7 # C8 # None of these code blocks are needed

(iv) [1 pt] # D1 # D2 # D3 # D4

# D5 # D6 # D7 # D8 # None of these code blocks are needed
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