Math 54. Solutions to the Final Exam
(20 points) Let (z1,z2,23) be the solution to the linear system

$1+2x2+7$3:6
21 + 2 =4
—T1 +3£U2+5.T3 =0.
Use Cramer’s rule to find x3.

By Cramer’s rule,

1 2 6
~ 2 1 4 (—1) 2 6 _3 1 6
det A3(b) -1 3 0 1 4 2 4
373 = = =
det A 1 2 7 9 2 7 n 1 7
2 1 0 3 5 -1 5
-1 3 5
_—(8—6)—3(4—12) _—2+24_2_E
=210 -21)+(54+7) 22412 34 17’
2 4 3 1 17 1 2 0 1 2
. 1 2 0 1 2 0 01 0 4 )
(30 points) Let A = 9 41 2 8|° and B = 00 0 -1 1 Given
2 4 2 -5 19 0O 00 0 O
that A is row equivalent to B, and using the methods taught in Math 54, find:

(a). A basis for Row A.

Use the nonzero rows of B:

1 0 0
2 0 0
0] , 11, 0
1 0 —1
2 4 1
(b). A basis for Col A.
Use the pivot columns of A:
2 3 1
1 0 1
2|7’ 1|7 2
2 2 -5



(c). A basis for Nul A.

Further reduce B to reduced row echelon form, and write the solution of AZ =0
in parametric vector form:

1 2 0 1 2 1 2 0 0 3
0O 01 0 4 0 01 0 4
000 -1 1]7]oo0oo0 1 -1
0O 0 0 0o O 0O 0 0 0 O
I —2.’172—3565 —2 -3
T2 T2 1 0
I3 = —4335 = T9 0 + s —4
Ty I5 0 1
Is Is 0 1
Therefore a basis for Nul A is
-2 -3
1 0
0 , —4
0 1
0 1

(20 points) Given bases
1 1 1 0
i (R I (IR
find a matrix M such that

for all # € R2.

By the method of Example 3 on page 230, we compute BP :

«—C"
.. 1 110 1 110
[blb20162]21231N0121
1 110 1 0 -1 —1
01 2 1 01 2 1]/

and so



(20 points) Let V' be Po, with the inner product

(f.g) = /0 Fa)g(z) dz .

Compute the orthogonal projection of p onto the subspace spanned by ¢, where

p(z) = 22 and g(z)=14=x.
We have
1 1 4 311
5 3 9 T z 1 1 7
(p,q) /O:B(+:U)m /O(m—i-:v)x 4—1—30 173515
and
! ! 3 ! 7
<q,q>—/ (1+x)2dw—/ (#*+2x4+1)de =" +a2*+z| =-+1+1==.
0 0 3 0 3
Therefore 0.q) 712 )
. D, q +x
proj,p = q=——(14+z) = .
e T3 o=
(20 points) Find all least-squares solutions to the linear system
T1+ 229 +23=0
I — X3 = 1
To+x3=1.
We have
1 2 1 . 0
A=|1 0 -1 and b=11],
01 1 1
Slo)
1 1 0 1 2 1 2 20 . 1
ATA=12 0 1|1 0 —-1|=|2 5 3 and  ATb=|1
1 -1 1 01 1 0 3 3 0

Therefore the normal equations have the following augmented matrix, which is row
reduced as follows:

2 2 0 1 2 2 0 1 2 2 0 1
2 53 1|~[0 33 0l~|0 330
0330 03 30 0000
[1 1 0 3 10 -1 3
~10 1 1 0l~]01 1 0
(00 00 00 0 0
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Therefore the solutions are

X1 xr3 + % % 1
To | = —I3 =10 +x3| -1
I3 I3 0 1

(in parametric vector form).

(20 points) For each of the parts listed below, either give an example of such a matriz,
or give a brief reason why no example exists. If you give an example, it must be either
a specific matrix, or a matrix expression (involving sums, products, inverses, etc.) that
evaluates to a specific matrix.

(a). A 3 x 3 matrix A with eigenvalues 1, 2, and 3, and corresponding eigen-

1 2 3
vectors 1 = |0 |, vo = |1]|,and 5= |4 |, respectively.
0 0 2

The matrix [¢7 @5 ¥3] is nonsingular (it is upper triangular, so it is easy to see
that its determinant is nonzero). Therefore, a matrix A exists:
-1

1 2 3 1 0 0 1 2 3

0 1 4 0 2 0 0 1 4

0 0 2 0 0 3 0 0 2
0 1 1
(b). Same as part (a), but with ¥ = | 1|, th = |1]|,and 03 = |2
2 1 3

Since ¥ + ¥, — U3 = 0, the three vectors are linearly dependent. Since eigenvectors
for distinct eigenvalues must be linearly independent (Theorem 2 on page 240), there
can be no such matrix A.

1 1 2
(c). Same as part (a), but with o3 = [1|, o = | —1|,and 03 = [0, and
0 -1 1

requiring that A be symmetric.

For symmetric matrices, eigenvectors of distinct eigenvalues must be orthogonal
(Theorem 1 on page 341). However, 07 and @3 are not orthogonal, so there can be no
such matrix A.

(25 points) (a). Compute the Wronskian Wz, e”, sinz].

z sin x
cosx |=ux

—sinx

(&
e
e

z sin x

—sinzx

e’ cosx
e’ —sinx

€
€

Wiz, e®, sinx] = © —|%,

O = 8

x

= ze”(—sinz — cosz) + 2e” sinz = e*((2 — x)sinx — xcosx) .



Note: Wrong answer.
The Wronskien Lemma states that the functions are linearly independent
because you can find at least one case where the Wronskien is nonzero.

(b). Are the functions z, e*, sinz linearly independent? Explain, using the
Wronskian.

No, because the Wronskian is not everywhere zero; for example,

Wiz, e, sinz](r) = me”™

(c). Use a property of Wronskians to show that there is no differential equation

"

V" +p1y” + 2y +p3y =0,

xT

with p1, p2, and ps continuous on (—oo,00), for which z, e*, and sinz are all

solutions.

This is a Wronskian of three functions, so if those functions are solutions to the
given (third-order) differential equation, then the Wronskian would either always be zero
or always be nonzero (Theorem 3 on page 480). However, we saw that the Wronskian
is nonzero when x = 7, and it is zero when x = 0. So, the three functions cannot all
be solutions to the differential equation.

8. (20 points) Let

'S
Il

2 3
0 2|°

(a). Compute e,

As in Example 1 on page 554, we first compute the characteristic polynomial of
A. Since A is upper triangular, this is easy: it is (A — 2)?. The matrix has a double
eigenvalue of A = 2.

2
We then note that (A — 2I)? = [8 g} = [8 8] This allows for computing
eAt:
At _ 2t (A-2D)t __ 2t 0 3|\ __ 2|1 3t
et =e"e =e (I—i—t[o O])-e [0 e

(b). Write down the fundamental matrix X (¢) for the differential equation ¥’ = AZ.

62t 3t€2t :|

It is et = [ 0 et

(c). Write a general solution to Z’ = AZ as a linear combination of vectors.

. 2t 3t 2t
#(t) = e [60 ] + e [ e; .
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(30 points) (a). For the initial-boundary value problem
ox2 Oz Ot

u(0,t) = u(m,t) =0, t>0,
u(z,0) = f(x), O<z<m,

O<ax<m, t>0,

carry out separation of variables to produce two ordinary differential equations and all
corresponding boundary or initial conditions.

Substitute u(x,t) = X (x)T(t) into the original differential equation and divide by
X(z)T(t):
X"(2)T(t) + 4X" ()T () = X (2)T'(t) 5
X"(x) 4X'(z) T'(t)

X(z) T X@  TW)

Since the left-hand side is independent of ¢ and the right-hand side is independent of
x , their common value must equal some constant —A\.
Looking at the left-hand side first, we have

X"(x) 4X'(x)

X@) | X@)

therefore
X"(x) +4X'(X)+ XX (z) =0. (1)

The boundary conditions u(0,t) = u(w,t) = 0 give conditions on X (z):

therefore
T'(t)+AT(t)=0. (3)

The two differential equations are (1)—(2) and (3).

(b). Find an eigenfunction for one of the ordinary differential equations that you
found in part (a). [Correction: Find an eigenfunction for X .]

The characteristic polynomial of (1) is r? + 4r + X, which has roots
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Based on our experience with the heat equation, we look for values of A that cause
the roots to be complex (and not real); i.e., A > 4. So, if A > 4, then the roots are
—2 £ iV —4, and the general solution to (1) is

X(x) = 016_29” coszVA—4+ 026_29” sinzv—4.

The boundary condition X (0) = 0 then gives ¢; = 0, and the other boundary condi-
tion gives sinmy/A —4 = 0. This gives that v/A —4 must be an integer (necessarily
positive).

The choice A =5 gives v A —4 =1, which in turn gives the eigenfunction

X(z)=e *sinzx.

(20 points) Find a formal solution to the initial-boundary value problem

o _ 0%
ot " 0x2’
u(0,t) =u(1,t) =0, t>0,

O<x<l, t>0,

oo
1
u(x,0) = E — sinnmw 0<z<l.
n
n=1

This is the heat equation with 8 = 3 and L = 1. The initial condition gives
¢n = 1/n? | so a formal solution (using the given formula) is

oo

1
u(z,t) = Z ﬁe_?’("”)gt sinnmr .
n=1



