
Math 54. Solutions to the Final Exam

1. (20 points) Let (x1, x2, x3) be the solution to the linear system

x1 + 2x2 + 7x3 = 6

2x1 + x2 = 4

−x1 + 3x2 + 5x3 = 0 .

Use Cramer’s rule to find x3 .

By Cramer’s rule,

x3 =
detA3(~b)

detA
=

∣∣∣∣∣∣
1 2 6
2 1 4
−1 3 0

∣∣∣∣∣∣∣∣∣∣∣∣
1 2 7
2 1 0
−1 3 5

∣∣∣∣∣∣
=

(−1)

∣∣∣∣ 2 6
1 4

∣∣∣∣− 3

∣∣∣∣ 1 6
2 4

∣∣∣∣
−2

∣∣∣∣ 2 7
3 5

∣∣∣∣+

∣∣∣∣ 1 7
−1 5

∣∣∣∣
=
−(8− 6)− 3(4− 12)

−2(10− 21) + (5 + 7)
=
−2 + 24

22 + 12
=

22

34
=

11

17
.

2. (30 points) Let A =


2 4 3 1 17
1 2 0 1 2
2 4 1 2 8
2 4 2 −5 19

 . and B =


1 2 0 1 2
0 0 1 0 4
0 0 0 −1 1
0 0 0 0 0

 . Given

that A is row equivalent to B , and using the methods taught in Math 54, find:

(a). A basis for RowA .

Use the nonzero rows of B :
1
2
0
1
2

 ,


0
0
1
0
4

 ,


0
0
0
−1
1

 .

(b). A basis for ColA .
Use the pivot columns of A :

2
1
2
2

 ,


3
0
1
2

 ,


1
1
2
−5

 .

1
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(c). A basis for NulA .

Further reduce B to reduced row echelon form, and write the solution of A~x = ~0
in parametric vector form:

1 2 0 1 2
0 0 1 0 4
0 0 0 −1 1
0 0 0 0 0

 ∼


1 2 0 0 3
0 0 1 0 4
0 0 0 1 −1
0 0 0 0 0



x1
x2
x3
x4
x5

 =


−2x2 − 3x5

x2
−4x5
x5
x5

 = x2


−2
1
0
0
0

+ x5


−3
0
−4
1
1

 .

Therefore a basis for NulA is 
−2
1
0
0
0

 ,


−3
0
−4
1
1

 .

3. (20 points) Given bases

B =

{[
1
1

]
,

[
1
2

]}
and C =

{[
1
3

]
,

[
0
1

]}
,

find a matrix M such that [
~x
]
B = M

[
~x
]
C

for all ~x ∈ R2 .

By the method of Example 3 on page 230, we compute P
B←C :

[
~b1 ~b2 ~c1 ~c2

]
=

[
1 1 1 0
1 2 3 1

]
∼
[

1 1 1 0
0 1 2 1

]
∼
[

1 1 1 0
0 1 2 1

]
∼
[

1 0 −1 −1
0 1 2 1

]
,

and so

M = P
B←C =

[
−1 −1
2 1

]
.
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4. (20 points) Let V be P2 , with the inner product

〈f, g〉 =

∫ 1

0

f(x)g(x) dx .

Compute the orthogonal projection of p onto the subspace spanned by q , where

p(x) = x2 and q(x) = 1 + x .

We have

〈p, q〉 =

∫ 1

0

x2(1 + x) dx =

∫ 1

0

(x3 + x2) dx =
x4

4
+
x3

3

∣∣∣∣1
0

=
1

4
+

1

3
=

7

12

and

〈q, q〉 =

∫ 1

0

(1 + x)2 dx =

∫ 1

0

(x2 + 2x+ 1) dx =
x3

3
+ x2 + x

∣∣∣∣1
0

=
1

3
+ 1 + 1 =

7

3
.

Therefore

projq p =
〈p, q〉
〈q, q〉

q =
7/12

7/3
(1 + x) =

1 + x

4
.

5. (20 points) Find all least-squares solutions to the linear system

x1 + 2x2 + x3 = 0

x1 − x3 = 1

x2 + x3 = 1 .

We have

A =

 1 2 1
1 0 −1
0 1 1

 and ~b =

 0
1
1

 ,

so

ATA =

 1 1 0
2 0 1
1 −1 1

 1 2 1
1 0 −1
0 1 1

 =

 2 2 0
2 5 3
0 3 3

 and AT~b =

 1
1
0

 .

Therefore the normal equations have the following augmented matrix, which is row
reduced as follows: 2 2 0 1

2 5 3 1
0 3 3 0

 ∼
 2 2 0 1

0 3 3 0
0 3 3 0

 ∼
 2 2 0 1

0 3 3 0
0 0 0 0


∼

 1 1 0 1
2

0 1 1 0
0 0 0 0

 ∼
 1 0 −1 1

2
0 1 1 0
0 0 0 0

 .
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Therefore the solutions arex1x2
x3

 =

x3 + 1
2

−x3
x3

 =

 1
2
0
0

+ x3

 1
−1
1


(in parametric vector form).

6. (20 points) For each of the parts listed below, either give an example of such a matrix,
or give a brief reason why no example exists. If you give an example, it must be either
a specific matrix, or a matrix expression (involving sums, products, inverses, etc.) that
evaluates to a specific matrix.

(a). A 3 × 3 matrix A with eigenvalues 1 , 2 , and 3 , and corresponding eigen-

vectors ~v1 =

 1
0
0

 , ~v2 =

 2
1
0

 , and ~v3 =

 3
4
2

 , respectively.

The matrix [~v1 ~v2 ~v3 ] is nonsingular (it is upper triangular, so it is easy to see
that its determinant is nonzero). Therefore, a matrix A exists: 1 2 3

0 1 4
0 0 2

 1 0 0
0 2 0
0 0 3

 1 2 3
0 1 4
0 0 2

−1

(b). Same as part (a), but with ~v1 =

 0
1
2

 , ~v2 =

 1
1
1

 , and ~v3 =

 1
2
3

 .

Since ~v1 +~v2−~v3 = ~0 , the three vectors are linearly dependent. Since eigenvectors
for distinct eigenvalues must be linearly independent (Theorem 2 on page 240), there
can be no such matrix A .

(c). Same as part (a), but with ~v1 =

 1
1
0

 , ~v2 =

 1
−1
−1

 , and ~v3 =

 2
0
1

 , and

requiring that A be symmetric.

For symmetric matrices, eigenvectors of distinct eigenvalues must be orthogonal
(Theorem 1 on page 341). However, ~v1 and ~v3 are not orthogonal, so there can be no
such matrix A .

7. (25 points) (a). Compute the Wronskian W [x, ex, sinx] .

W [x, ex, sinx] =

∣∣∣∣∣∣
x ex sinx
1 ex cosx
0 ex − sinx

∣∣∣∣∣∣ = x

∣∣∣∣ ex cosx
ex − sinx

∣∣∣∣− ∣∣∣∣ ex sinx
ex − sinx

∣∣∣∣
= xex(− sinx− cosx) + 2ex sinx = ex((2− x) sinx− x cosx) .
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(b). Are the functions x , ex , sinx linearly independent? Explain, using the
Wronskian.

No, because the Wronskian is not everywhere zero; for example,

W [x, ex, sinx](π) = πeπ .

(c). Use a property of Wronskians to show that there is no differential equation

y′′′ + p1y
′′ + p2y

′ + p3y = 0 ,

with p1 , p2 , and p3 continuous on (−∞,∞) , for which x , ex , and sinx are all
solutions.

This is a Wronskian of three functions, so if those functions are solutions to the
given (third-order) differential equation, then the Wronskian would either always be zero
or always be nonzero (Theorem 3 on page 480). However, we saw that the Wronskian
is nonzero when x = π , and it is zero when x = 0 . So, the three functions cannot all
be solutions to the differential equation.

8. (20 points) Let

A =

[
2 3
0 2

]
.

(a). Compute eAt .

As in Example 1 on page 554, we first compute the characteristic polynomial of
A . Since A is upper triangular, this is easy: it is (λ− 2)2 . The matrix has a double
eigenvalue of λ = 2 .

We then note that (A − 2I)2 =

[
0 3
0 0

]2
=

[
0 0
0 0

]
. This allows for computing

eAt :

eAt = e2te(A−2I)t = e2t
(
I + t

[
0 3
0 0

])
= e2t

[
1 3t
0 1

]
.

(b). Write down the fundamental matrix X(t) for the differential equation ~x ′ = A~x .

It is eAt =

[
e2t 3te2t

0 e2t

]
.

(c). Write a general solution to ~x ′ = A~x as a linear combination of vectors.

~x(t) = c1

[
e2t

0

]
+ c2

[
3te2t

e2t

]
.

Note: Wrong answer. 
The Wronskien Lemma states that the functions are linearly independent 
because you can find at least one case where the Wronskien is nonzero.
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9. (30 points) (a). For the initial-boundary value problem

∂2u

∂x2
+ 4

∂u

∂x
=
∂u

∂t
, 0 < x < π , t > 0 ,

u(0, t) = u(π, t) = 0 , t > 0 ,

u(x, 0) = f(x) , 0 < x < π ,

carry out separation of variables to produce two ordinary differential equations and all
corresponding boundary or initial conditions.

Substitute u(x, t) = X(x)T (t) into the original differential equation and divide by
X(x)T (t) :

X ′′(x)T (t) + 4X ′(x)T (t) = X(x)T ′(t) ;

X ′′(x)

X(x)
+

4X ′(x)

X(x)
=
T ′(t)

T (t)
.

Since the left-hand side is independent of t and the right-hand side is independent of
x , their common value must equal some constant −λ .

Looking at the left-hand side first, we have

X ′′(x)

X(x)
+

4X ′(x)

X(x)
= −λ ;

therefore
X ′′(x) + 4X ′(X) + λX(x) = 0 . (1)

The boundary conditions u(0, t) = u(π, t) = 0 give conditions on X(x) :

X(0) = X(π) = 0 . (2)

For the right-hand side, we have

T ′(t)

T (t)
= −λ ;

therefore
T ′(t) + λT (t) = 0 . (3)

The two differential equations are (1)–(2) and (3).

(b). Find an eigenfunction for one of the ordinary differential equations that you
found in part (a). [Correction: Find an eigenfunction for X .]

The characteristic polynomial of (1) is r2 + 4r + λ , which has roots

−4±
√

16− 4λ

2
= −2±

√
4− λ .
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Based on our experience with the heat equation, we look for values of λ that cause
the roots to be complex (and not real); i.e., λ > 4 . So, if λ > 4 , then the roots are
−2± i

√
λ− 4 , and the general solution to (1) is

X(x) = c1e
−2x cosx

√
λ− 4 + c2e

−2x sinx
√
λ− 4 .

The boundary condition X(0) = 0 then gives c1 = 0 , and the other boundary condi-
tion gives sinπ

√
λ− 4 = 0 . This gives that

√
λ− 4 must be an integer (necessarily

positive).
The choice λ = 5 gives

√
λ− 4 = 1 , which in turn gives the eigenfunction

X(x) = e−2x sinx .

10. (20 points) Find a formal solution to the initial-boundary value problem

∂u

∂t
= 3

∂2u

∂x2
, 0 < x < 1 , t > 0 ,

u(0, t) = u(1, t) = 0 , t > 0 ,

u(x, 0) =
∞∑
n=1

1

n2
sinnπx , 0 < x < 1 .

This is the heat equation with β = 3 and L = 1 . The initial condition gives
cn = 1/n2 , so a formal solution (using the given formula) is

u(x, t) =
∞∑
n=1

1

n2
e−3(nπ)

2t sinnπx .


