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Physics 112
Spring 2009

Midterm 1
(50 minutes =50 points)
Try to time yourself. You may use one single sided page of notes.

1) Thermodynamic identity (7 points)
a) (5 points) State the thermodynamic identity (1%
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2) Energy of a system of harmonic oscillators (10 points).

We consider a system of N harmonic oscillators of fundamental energy hw. We have
seen in homework that for large N the number of states of energy U is
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a. (5 points) Compute the temperature T as a function of U.
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b. (3 points) Show that the average energy per oscillator is
U hw

This is the Planck distribution!
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3) Centrifuge (8 points)
Centrifuges can used to increase the concentrat
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for the solvent density to be constant with radius (the solvent therefore drops out of the

problem). We will assume that the system is in t
a) (3 points) Show that the potential energy

hermal equilibrium at temperature 7.
per particle at radius r is
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b) (5 points) Use what you know about the chemical potential of an ideal gas to give
the variation of concentration 7 of the bio-molecules with the radius r?
=V s = nooo_ 2 o
/A' /‘AI "'}AEY—'" «r ng ’\Q 5 Mmw r (.‘O\'\Jlmn’\“
N v
Ud = ) = nled ok SR M W (o
M pLed) = 1\03“1\\1 3 M t s e — 3" )

oy 4 = gt

lmb‘rd'
lnur‘\-: nLo) e 2 T f




4) Light bulb problem (10 points)

A 100W light bulb is left burning inside a reversible refrigerator that draws
100W.
a) (3 points) Can the refrigerator cool below room temperature?
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b) (7 points) Justify your answer by drawing the exchanges of energy and entropy
and deriving the efficiency of the refrigerator through the conservation of energy and
entropy over a cycle.
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5) Entropy of an ideal gas (15 points)
This is mostly a conceptual problem, but you will be guided along the way.
We consider an ideal gas system of monoatomic spinless particles of mass M in a volume
V at physical temperature 1.
a) (4 points) Using what you know about the density of spatial quantum states per
unit phase space volume, show that the number of spatial states for 1 particle
between the energy € and g+de (integrated over directions) is
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b) (3 points) We have seen in the recent days that the probability for one particle of
such system to be in a state of energy € is proportional to
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Deduce from this that the normalized probability distribution in energy is
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¢) (5 points) In order to compute the entropy,

we need the probabllml‘\
individual states of energy €,. Comparing the results a and b show that
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aresult we got in class with the partition function.
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d) (3 points) From this result and our general definition of entropy, show that the
entropy for one particle is

o, =log(Vn,)+3/2
(this uses the fact that T'(5/2) = 3Jm
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