
CS 189
Fall 2016

Introduction to
Machine Learning Final

• Do not open the exam before you are instructed to do so.

• The exam is closed book, closed notes except your one-page cheat sheet.

• Usage of electronic devices is forbidden. If we see you using an electronic device (phone, laptop, etc.) you will
get a zero.

• You have 3 hours.

• Write your initials at the top right of each page (e.g., write “BR” if you are Ben Recht).

• Mark your answers on the exam itself in the space provided. Do not attach any extra sheets.

First name

Last name

SID

First and last name of student to your left

First and last name of student to your right
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Q1. [10 pts] Inverse Gaussian Distribution
The inverse Gaussian distribution, denoted IG(µ, λ), is a continuous distribution supported on (0,∞) and param-
eterized by two scalars µ > 0 and λ > 0. For any x ∈ (0,∞), the probability density function f(x;µ, λ) is given
by

f(x;µ, λ) =

√
λ

2πx3
exp

{
−λ(x− µ)2

2µ2x

}
.

(a) [3 pts] Suppose we draw n independent samples x1, ..., xn from IG(µ, λ). Write down the log-likelihood
L(x1, ..., xn;µ, λ).

We have that for x ∈ (0,∞),

log f(x;µ, λ) =
1

2
log λ− 1

2
log 2πx3 − λ(x− µ)2

2µ2x
.

Hence,

L(x1, ..., xn;µ, λ) =

n∑
i=1

log f(xi;µ, λ) =
n

2
log λ−

n∑
i=1

1

2
log 2πx3i −

n∑
i=1

λ(xi − µ)2

2µ2xi
.

(b) [2 pts] Is the function φ : (0,∞) −→ R defined as φ(λ) = L(x1, ..., xn;µ, λ) convex, concave, or both? No need
to justify your answer.

Concave. φ(λ) = a log λ+ bλ+ c for scalars a, b, c with a > 0, and log λ is concave on (0,∞).

(c) [5 pts] Now assume that µ is known. Derive the maximum likelihood estimator λ̂ given n independent samples
x1, ..., xn from IG(µ, λ).

Solving for the stationary point of d
dλL(x1, ..., xn;µ, λ) = 0,

0 =
d

dλ
L(x1, ..., xn;µ, λ) =

n

2λ
−

n∑
i=1

(xi − µ)2

2µ2xi
=⇒ λ̂−1 =

1

n

n∑
i=1

(xi − µ)2

µ2xi
.

Since the function φ(λ) is concave on (0, λ) and the proposed maximizer is positive with probablity one, then
the solution to d

dλL(x1, ..., xn;µ, λ) = 0 is both a necessary and sufficient condition for a global maximum.
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Q2. [25 pts] Multivariate Gaussians
Let x be a d-dimensional random vector distributed as a Gaussian with mean µ ∈ Rd and positive definite covariance
matrix Σ ∈ Rd×d: that is, x ∼ N(µ,Σ).

(a) [5 pts] Let v ∈ Rd. What are the mean and variance of vTx? vTµ and vTΣv.

(b) [5 pts] What is the distribution of vTx? N(vTµ, vTΣv).

(c) [5 pts] Suppose we get to choose v from the unit sphere (i.e. ‖v‖2 = 1). Write down a (unit-norm) choice of v
that maximizes the variance of vTx. Leading eigenvector of Σ.

(d) [5 pts] Let z ∼ N(0, Id). Find a matrix A and a vector b such that Az + b has the same distribution as x.
A = Σ1/2, b = µ.

(e) [5 pts] Now find a matrix A and a vector b such that Ax + b has the same distribution as z. A = Σ−1/2, b =
−Σ−1/2µ.
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Q3. [20 pts] Data Geometry
Consider the following two-dimensional data set:

Note that the mean of this data set is 0.

(a) [5 pts] Suppose someone assigns a label yi = +1 or yi = −1 to every data point and we solve a Support Vector
Machine (SVM) classification problem:

minimizew∈R2,b∈R
1
n

∑n
i=1 max(1− yi(wTxi + b), 0) + λ‖w‖22 .

Here, b is an unregularized bias term, and λ > 0. Show that both components of w must be equal to each
other.

The optimal w? must lie in the span of the data. Therefore, since all of the data points have both components
equal to each other, w? will as well.

(b) [5 pts] Suppose λ = 0. Given the information provided, what can be said about the possible values for w?

The optimal w? could be any direction in R2 based on the information provided. Without regularization, w
can roam free.

(c) [5 pts] Draw the principal components of this data set on the plot.

Solution:

(d) [5 pts] What is the ratio of the smallest eigenvalue to the largest eigenvalue of the covariance matrix of this
data?

0.

4



Q4. [20 pts] Residual Neural Network
Consider the following neural network, which operates on scalars.

x z1|a1 z2|a2 z3 ŷw1 w2 w3

In this network, w1, w2, and w3 are scalars. The network takes the scalar x as input, and computes z1 = w1x. The
ReLU nonlinearity is then applied: a1 = ReLU(z1). Next, the network computes z2 = w2a1 and applies the ReLU
nonlinearity: a2 = ReLU(z2). Next, z3 = a1 + a2. Finally, ŷ = w3z3.

We will use the mean squared error loss function L = 1
2 (y − ŷ)2 to train this network. You may use R(x) and R′(x)

to denote ReLU and the derivative of ReLU respectively.

(a) [5 pts] Find dL
dw3

.
dL

dw3
= −(y − ŷ)z3

(b) [5 pts] Find dL
dw2

.

dL

dw2
= −(y − ŷ)w3

dR(w2a1)

dw2
= −(y − ŷ)w3R

′(z2)a1

(c) [5 pts] Find dL
dw1

.

dL

dw1
= −(y − ŷ)w3

d(R(w1x) +R(w2R(w1x)))

dw1

= −(y − ŷ)w3(R′(w1x)x+R′(w2R(w1x))w2R
′(w1x)x)

= −(y − ŷ)w3R
′(z1)x(1 +R′(z2)w2)

(d) [5 pts] How would the network change if we added a ReLU nonlinearity to unit z3 such that a3 = ReLU(z3), ŷ =
w3a3. Briefly explain your reasoning.

We already have that a1 ≥ 0, a2 ≥ 0, so it would be redundant to apply ReLU to z3.
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Q5. [35 pts] Feature Engineering
In this class, we have tried to emphasize the importance of good features. In this question, we’ll take this a step
further and see that good features need to be predictive on the training set, but also generalize well to unseen data.

Let n denote the number of UC Berkeley students, and let us assign an arbitrary ordering to all students. Let
y1, y2, ..., yn ∈ R denote the ages of all the students. Our goal is to predict the age y of a new transfer student on
campus based on some list of features. A natural feature choice could be, for example, year of study. But suppose
we only have access to student ID (SID) numbers. You are a bit unsure how to use this information, so you ask some
of your friends.

Note: For this question, assume that n < 109.

One-hot encoding. You first ask your friend from Stanford how to encode a student ID into a feature vector.
“Use one-hot encoding”, your friend responds. You are a bit skeptical, but you proceed onwards. Since there are 9
digits in an SID, you one-hot encode each SID into an element of {0, 1}d where d = 109. Let x1, ..., xn ∈ Rd denote
the encoded features of the training set stacked row-wise into a matrix X ∈ Rn×d, and Y = (y1, ..., yn) ∈ Rn denote
the age vector of students in the training set (note that n < d). You proceed to use regularized least squares and
solve

minimizew∈Rd

1

2
‖Xw − Y ‖22 +

λ

2
‖w‖22 . (1)

(a) [3 pts] How does the regularization term (λ2 ‖w‖
2
2) ensure a unique solution to (1)?

The matrix X is of dimension n× 109 with n < 109, so the matrix X has a non-trivial null-space.

(b) [5 pts] Compute the solution w? ∈ R109 to (1), assuming that xi = ei ∈ Rd where ei denotes the i-th standard
basis vector in Rd. That is, someone sorted your data such that the i-th student has SID i. Your answer should
only be expressed in terms of Y and λ.

Hint: You may perform this calculation either directly, or using the kernel trick.

(Direct.) We know that w? = (XTX + λId)
−1XTY . Hence,

X =
[
In 0n,d−n

]
, XTX =

n∑
i=1

eie
T
i =

[
In 0n,d−n

0d−n,n 0d−n,d−n

]
.

Therefore,

w? = (XTX + λIn)−1XTY =

[
1

1+λIn 0n,d−n
0d−n,n

1
λId−n,d−n

] [
In

0d−n,n

]
Y

=

[
1

1+λIm
0d−n,n

]
Y =

[
1

1+λY

0d−n

]
.

(Kernel trick.) It is not hard to see that the gram matrix XXT = In. Recall that w? = XTα?, and α? =

(XXT + λIn)−1Y . Clearly then α? = 1
1+λY and w? = XTα? =

[
1

1+λY

0d−n

]
.

(c) [3 pts] Compute predict(xi) = 〈w?, xi〉 for xi in the training set.

predict(xi) =
1

1 + λ
yi .

(d) [3 pts] Suppose x is the feature vector for the transfer student who is not in the training set. Compute
predict(x) = 〈w?, x〉 for x not in the training set.
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Since x is not in the training set, its one-hot encoding is orthogonal to every feature vector in the training set.
Thus

predict(x) = 0 .

Logical features. Unsatisfied with the performance of one-hot encoding, you ask another friend from MIT what
features to use. Your friend tells you to use the feature that is equal to 1 if the student goes to Berkeley, and 0
otherwise. You are even more skeptical, but you proceed onwards.

(e) [5 pts] Using the features xi = 1 for all 1 ≤ i ≤ n, write the solution w? to the following unregularized problem:

minimizew∈R
1

2
‖Xw − Y ‖22 .

Our features in this case are scalars. We know that X = 1n and hence XTX = 1T
n1n = n. The solution is

simply w? = 1
n

∑n
i=1 yi.

(f) [3 pts] Now compute predict(xi) = 〈w?, xi〉 using the w? from part (e) for xi in the training set.

predict(xi) =
1

n

n∑
i=1

yi .

(g) [3 pts] Since the transfer student is a Berkeley student, the value of their feature will be x = 1. Compute
predict(x) = 〈w?, x〉 using the w? when x is the transfer student who is not in the training set.

Again,

predict(xi) =
1

n

n∑
i=1

yi .
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Combining features. Still unsatisfied with previous suggestions, we consider combining both the one-hot encoded
features and the constant feature.

(h) [10 pts] We now consider xi = (ei, 1) ∈ Rd+1, where ei ∈ Rd as before. For simplicity, we set λ = 0, and
consider the following problem.

minimizew∈Rd+1

1

2
‖Xw − Y ‖22 .

Compute a minimizer w? of this problem, and predict(x) for x in and not in the training set.

Hint: The Sherman-Morrison formula states that for invertible A and column vectors u, v such that 1 +
vTA−1u 6= 0,

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Since we are allowed to compute any minimizer, it is easiest to compute the minimum norm one by employing
the kernel trick. Observe that

X =
[
In 0n,d−n 1n

]
, XXT = In + 1n1

T
n .

By the Sherman-Morrison formula, we have that

(XXT)−1 = (In + 1n1
T
n)−1 = In −

1n1
T
n

1 + n
.

Hence,

α? = (XXT)−1Y =

(
In −

1n1
T
n

1 + n

)
Y .

Furthermore, the minimum norm minimizer w? is given by

w? = XTα? =

 In
0d−n,n
1T
n

(In − 1n1
T
n

1 + n

)
Y =


(
In − 1n1

T
n

1+n

)
Y

0d−n
1T
nY − n

n+11
T
nY

 =


(
In − 1n1

T
n

1+n

)
Y

0d−n
1

n+1

∑n
i=1 yi

 .

We are now in a position to compute the predict(x) function. On the training set.

predict(xi) = yi .

For x not in the training set,

predict(x) =
1

n+ 1

n∑
i=1

yi .
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Q6. [20 pts] Calibration
Suppose we attempt to solve a binary classification task with binary feature vectors. Specifically, we are given n
data points {(xi, yi)}ni=1 with xi ∈ {0, 1}d (i.e. each of the d feature values is either 0 or 1) and yi ∈ {0, 1}. Suppose
we try to fit the standard linear logistic regression model:

P (y = 1|x,w, b) = g(wTx+ b) =
1

1 + exp(−wTx− b)
.

We say that a model is calibrated if

1

n

n∑
i=1

P (yi = 1|xi, w, b) =
1

n

n∑
i=1

yi .

That is, if the average probability of labeling the data in class 1 is equal to the average number of occurrences of
class 1 on the training set. Calibrated models are interesting because their predicted probabilities are more useful
as an indicator of confidence.

Consider training the logistic regression model where we solve the optimization problem

maximizew∈Rd,b∈R
∑n
i=1 logP (yi|xi, w, b) .

Let w?, b? denote the maximizing parameters.

(a) [5 pts] Show that the logistic model corresponding to the optimal w?, b? is calibrated.

Note that the log-likelihood can be written as

n∑
i=1

yi(w
Txi + b)− log(1 + exp(wTxi + b))

Taking a derivative with respect to b shows that b? must satisfy

0 =

n∑
i=1

{
yi −

exp(wT
? xi + b?)

1 + exp(wT
? xi + b?)

}
=

n∑
i=1

yi −
n∑
i=1

P (yi = 1|xi, w?, b?) .

Another (simpler) method:

Denote L as the log-likelihood, µi = P (yi = 1|xi, w, b) Reformulate wTxi + b as βTxi, with β = [w, 1]T , xi :=
[xi, 1]T ∈ Rd+1. From lecture/homework we know:

∇βL =

n∑
i

(yi − µi)xi = 0

Noting that xi,d = 1 (the bias component added to the end of x), we have:

n∑
i

yi − µi = 0 =⇒
n∑
i

yi =

n∑
i

µi

Many students made the mistake of claiming that under the optimal w?, b?, P (yi|xi, w, b) = yi. This is only
true if the data is linearly separable, and even then it is only true as ||w|| → ∞.

(b) [5 pts] Let Sj denote the set of indices i where Xij = 1. We say a model is conditionally calibrated with respect
to feature j if

1

|Sj |
∑
i∈Sj

P (yi = 1|xi, w, b) =
1

|Sj |

n∑
i∈Sj

yi .
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Show that the logistic model corresponding to the optimal w?, b? is calibrated with respect to every feature.

Taking a derivative with respect to wj shows that w?,j must satisfy

0 =

n∑
i=1

{
yixij −

xij exp(wT
? xi + b?)

1 + exp(wT
? xi + b?)

}
=

n∑
i=1

yixij −
n∑
i=1

xijP (yi = 1|xi, w?, b?)

=
∑
i∈Sj

yi −
∑
i∈Sj

P (yi = 1|xi, w?, b?) .

Here, the last line follows because xij = 1 only if i ∈ Sj , and otherwise xij = 0.

Another (simpler) method:

Using the same notation as the simpler method in the previous part, we see that:

n∑
i

(yi − µi)xi = 0 =⇒
n∑
i

(yi − µi)xij = 0,∀j =⇒
∑
i∈Sj

yi − µi = 0

(c) [5 pts] Suppose we add a regularizer for the w parameters to the optimization problem:

maximizew∈Rd,b∈R
∑n
i=1 logP (yi|xi, w, b) + λ‖w‖22 .

Is the logistic model corresponding to the optimal w?, b? calibrated? Is it calibrated with respect to every
feature?

The model remains calibrated, as the gradient for b does not change, and hence the same calculation as in part
(a) applies. However, for w, we now have

∂cost

∂wj
=
∑
i∈Sj

yi −
∑
i∈Sj

P (yi = 1|xi, w?, b?) + wj

which will not be calibrated with respect to feature j when wj 6= 0.

(d) [5 pts] Suppose someone gives you a classifying function f : Rd −→ R that inputs x and outputs a real number.
We can produce a probability from this classifier by setting

P (y = 1|x, f, α, β) =
1

1 + exp(αf(x) + β)

Show that one can always find values α and β such that the resulting probability estimates are calibrated.

If one fits the log likelihood over the data, the optimality conditions with respect to β will guarantee calibration.

Another way to think about this: you can think of f as essentially a feature transformation. Replace your
entire training set with f(x). Then train logistic regression on this training set. The optimality conditions we
already proved guarantee calibration.
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