MATH 185-4 FINAL SOLUTION

1. (8 points) Determine whether the following statements are true of false, no

justification is required.

(1) (1 point) Let D be a domain and let u,v : D — R be two harmonic functions,
then u + v is analytic on D.

False. u and v should satisfy the Cauchy—Riemann equation. For example,
for harmonic function u(z,y) = = and v(x,y) = 0, u + v is not analytic.

(2) (1 point) Let D be a domain and let f : D — C be an analytic function, then
f(2)dz is a closed form on D.

True. This is a theorem on the book. You can also directly check that
f(z)dz = f(x,y)dx +if(x,y)dy is a closed form, by using Cauchy—Riemann
equation.

(3) (1 point) Let f : C — C be an analytic function. Then for any 2z, € C, f(z)
equals a power series centered at zp, and the radius of convergence of this
power series is 00.

True. This is a theorem on the book: analytic functions have power series
expansions, and the radius of convergence is the radius of the disc where f is
(can be extended to) analytic.

(4) (1 point) If f : {1 < |2| < 2} — C is an analytic function, then there exist
analytic functions f; : {|z] < 2} — C and f5 : {|]z| > 1} — C such that

f:fl—fQOIl{1<|Z| <2}
True. This is just the Laurant decomposition.
(5) (1 point) For the function f(z) =sinl, z =0 is a pole.

False. If z = 0 is a pole, lim,_,q sin% should be co. However, for {n—lﬁ}, we
have % — 0 and f(==) = sinnm = 0. Moreover, this is actually an essential

4
singularity, since for { }, we have f (M) =1.
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(6) (1 point) Let D be a domain and let f : D — C be an analytic function, then
for any zp € D, the residue satisfies Res|f(z), zo] = 0.

True. The residue at z, is the coefficient of the (2 — z)™! term in the
Laurent expansion. Since f is analytic, there is always no (z — z) ™! term.

(7) (1 point) Let D be a bounded domain with piecewise smooth boundary, and
let f be a meromorphic function on D that extends to be analytic on 0D and

never vanishes on 0D. If faD J;((j)) dz = 47, then f has exactly two zeros in

D.

False. The statement only holds for analytic functions, but not for mero-
morphic functions. For a meromorphic function, the line integral equals 47
implies that the number of zeros minus the number of poles is equal to 2.

(8) (1 point) Let {f,} be a sequence of univalent analytic functions defined on
a domain D, and {f,} uniformly converges to f : D — C, then f is also
univalent.

False. It is possible that f is a constant function. For example, we can take
D = {|z| <1} and f,(2) = Z, then the uniform limit is f(z) = 0.



2. (10 points) Please briefly answer the following questions.

(1) (2 points) Let D C C be a domain and f : D — C be a continuous function.
What is the definition of ” f is an analytic function on D”?

f(z)=f(20)

For any point 2y € D, the complex derivative f'(zp) = lim,_,,, p—

exits, and the complex derivative f': D — C is a continuous function.

(2) (2 points) Let f : {|z — 29| < 2} — C be an analytic function, please write
f(20) as a complex line integral. (Cauchy’s integral formula)

Cauchy integral formula:

! )
20) = — dz, any r € (0,2).
fe=gmf any 1€ (0,2)
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(3) (2 points) Let f : {1 < |z| < 2} — C be an analytic function, then what is
the Laurent expansion of f?

The Laurent expansion is to express f as Y . apz¥, where

1 —k—1
= d
Uk 21 | (w)w v

w|=r

for any r € (1,2).

(4) (2 points) Let f: {0 < |z — 29| < 1} — C be an analytic function, then what
is the residue of f at zy? Please also write it as a complex line integral. ba
The residue of f at z is the coefficient of (z — zp) ™! in the Laurent expansion

of f, which is equal to == LSElz—ZO\:r f(2)dz for any r € (0,1).
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(5) (2 points) Let D be a bounded domain with piecewise smooth boundary, and
let f: D — C be an analytic function that extends to be analytic on 9D
and never equals 0 on dD. Please write the number of zeros of f in D as a
complex line integral.

The number of zeros of f in D is equal to

LS,
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3. (10 points) Let f : C — C be an analytic function, and suppose

f(2) = u(z,y) +iv(z,y)
for two real valued functions v and v. Please show that

g(Z) = U(SL’, _y) - ’iU(QE‘, _y>
is also an analytic function on C.

Let U(z,y) = u(z,—y) and V(z,y) = —v(x,—y). Then we need to check that
g(z) = U(z,y) + iV (x,y) satisfies the Cauchy—Riemann equation.
Since f is analytic, we know that the Cauchy-Riemann equation holds:

uz(2,y) = vy(x,y) and u,(z,y) = —v,(x,y).

For the function ¢ = U + iV, we have U,(z,y) = u,(z,—y) and V,(z,y) =
vy(z, —y) = uy(z,—y), so Uy(zr,y) = V,(z,y) holds. We also have Uy(z,y) =
—uy(z, —y) and Vy(z,y) = —v,(x,—y) = uy(x, —y), so Uy(z,y) = —Vi(x,y) hold-
s. This shows that U and V satisfy the Cauchy—Riemann equation.

Since f is analytic on C, all the first order partial derivatives of u and v are
continuous. The above equalities imply that all first order partial derivatives of U
and V' are also continuous. So ¢ is an analytic function.

Alternatively, you can check that g(z) = f(Z) and it is an analytic function. For
the complex derivative

pon o gz AzZ) —g(z2)
g(z) = AI,IZIEO Az - Alirilo Az Az50

Az
So the complex derivative of g(z) exists, which is equal to f/(Z). This is a contin-
uous function since f’ is continuous.
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4. (10 points) Please compute the complex line integral

7|{|:3 -1+ 1)2dz‘

The zeros of the denominator are z = 1 and z = —1. So for any small € > 0 (say
smaller than 1), since ThG e is analytic on {]z] <3} \ {£1}, we have

7{ CoS 2 d 7{ COS 2 d +% CoS 2 d
z = z z.
p=3 (2 = 1)(z +1)2 mtl=e (2 = 1) (2 + 1) il=e (2 = 1)(2+ 1)

For the first term, we have
COS 2

1 7{ COS 2 d 1 % G ( COS 2 ) | cos 1
— Zz = — Z = S EEE— =1 = .
210 Joqj=e (2 — 1)(2 + 1)2 21 Jjoqj=e (2 — 1) (z+1)2 4

For the second term, we have

1 7{ cos z q 1 7{ o d (cosz)’| sinl cosl
Py z= = (222 |l = — _ .
2mi |z+1|=€ (Z - 1)(2 + 1)2 21 |z+1]=¢ (Z + 1)2 z—1 1 2 4

So

coS 2 cosl sinl cosl
7{:3 (Z — 1)(z + 1)2 o m( 4 9 1 ) 1T SN



5. (10 points) Let D be a domain, and let f, g : D — C be two analytic functions.
Suppose that g is not constantly zero and |f(z)| < |g(z)| for all z € D.
(1) (2 points) On which subset of D is the function h(z) = % defined? (It is
possible that g(z) = 0 for some z € D.)

The function h(z) = Z; g; is defined on the subset of D where g is not equal
to 0, i.e.

{zeD|g(z)#0}.

(2) (8 points) Please show that h(z) can be extended to an analytic function on
D.

Since {z € D | g(z) # 0} is an open set, and both f and g are analytic,
h(z) = % is analytic on {z € D | g(z) # 0}. So we need only to take care of
the zero set of ¢, i.e. Z,={z € D | g(z) = 0}.

Since g is not constantly zero, the zero set Z, consists of isolated points. So
for any zp € Z,, there exists € > 0 such that {|z — 2| < e} N Z; = {2}

On the set {0 < |z — 2| < €}, h(z) = ggg is an analytic function, and

|h(2)| = |J; Ez;| < 1. Since h is bounded near zy, zp is a removable singularity
of h(z). So we can extend h(z) to zo analytically.
This shows that all the zeros of g(z) in D are removable singularities of

h(z). So we can extend h to an analytic function on D.




6. (10 points) Please compute

< WV
da.
/0x4+16x

(Your answer must be a real number!)

We consider the function f(z) = =2 on C \ (—o0,0], where v/Z is defined by

2146
|z|e *F with Argz € (—m, 7). Then f is an analytic function on C\ (—o0, 0].
Then we compute the complex line integral of f(z) on the boundary of
Dr={2€C|0<|z] <R, Rez> 0, Imz > 0}.
Since the singularity of f(z) in Dg is only 2¢'T we have
2 )
L)| B 1% — iﬂ'e_l

(24 +16)7 =2 16

On the other hand, f(’)DR f(z)dz consists of three terms: integral along [0, R],
integral along the quarter circle v and integral along [Ri, 0i]. So we have

i

NE

s
8 .

f(2)dz = 2mi - Res|

,2€'1] = 2mi
8Dg Z4 + 16 ] (

B NG B Vi
dz = d de— [ —— ida
ARA il AT e B T /0 (i) +16 "

By the M L-estimation, we have

| LB VZ VR TR?

™
< ZR=
ENRTELE .

R*—16 2 2(R*—16)
This term goes to 0 as R goes to oc.
we let R going to infinity, then

@_i%_i zz—ooﬁ 007\/& dde = (1—e'1 <V
me 's = lim aDRf()d —/0 d /0 iz dr = (1—e )/0

- da.
16 e 2116 )+ 16 16

So we get

/wﬁd NI ) 1 NoE

11600 16" 1 _ % 16" it _ T 32cosk’




7. (10 points) Please find the number of zeros of the polynomial
p(z) = 2" +i2° +1
on the upper half plane {z € C | Imz > 0}.

For any z € C with |z| > 2, we have |p(z)| > [27| — |2°| — 1 > (|2% - 2) - |2°| > 0.
So we only need to compute the number of zeros in the half disc

Dr={z€C||z| < R, Imz > 0},

for large R.

For large enough R, we want to define arg(p(z)) continuously on 0Dg, and check
how much does the argument change when we goes along 9Dy once.

Since R is very large, when z goes from 0 to R on the real axis, p(z) goes from
p(0) = 1 to p(R) ~ R". Since p(z) never crosses the y-axis for z € [0, R], we have
arg(p(0)) = 0 and arg(p(R)) =~ 0.

Since p(—R) ~ —R" and the 27 term makes the main contribution of arg(p(z)) on
the half circle {z € C | |z| = R, imz > 0}. So we can continuously define arg(p(z))
on the half circle such that arg(p(—R)) ~ 7.

When 2 goes from —R to 0, p(z) only crosses the y-axis once, since 27 + 1 has only
one real solution: z = —1. For z € [-R, —1), p(z) lies in the third quadrant. Since
arg(p(—R)) ~ 7m and p(—1) = —i, we can continuously defined arg(p(z)) such that
arg(p(—1)) =Tr + § = %7?. For z € (—1,0], p(z) lies in the fourth quadrant. Since
p(0) = 1, we end up with arg(p(0)) = 87 when we goes around the boundary of the
half disc once.

So p(z) = 27 +i2° + 1 has four zeros on the upper half plane.



8. (12 points) Let f : {|z|] < 1+ €} = C be an analytic function for some € > 0.
Suppose that |f(z)| < 1 for any z € {|z| < 1}, please follow the following steps and
show that there exists zg € {|z] < 1} such that f(z) = 2.

(This is the complex analysis version of the Brouwer fixed point theorem.)

(1) (2 points) For any n > 1, let fu(z) = (1 — £)f(z). Please prove that {f,}

uniformly converges to f on {|z| < 1}.

For any € > 0, take N = [1]. Then for any n > N and any z € {|z] < 1},

we have ' X
|fu(2) = f(2)] = E|f(2)| < " < €.

So {fn} uniformly converges to f on {|z| < 1}.

(2) (4 points) For each n, please show that there is a unique z, € {|z| < 1} such
that f.(z,) = zp.

On the boundary of the disc {|z| = 1}, for any n, we have

Al =151 > (1= DIfE) =1l

So Rouche’s theorem implies that z — f,,(z) has the same number of zeros
in {|z|] < 1} as the function z. Since z has a unique zero in {|z| < 1}, so does
2z — fau(2). Suppose this unique zero os z,, then clearly f,(z,) = z, holds.

(3) (5 points) Suppose that f(z) # z for any z € {|z| = 1}, please show that there
exists a unique zy € {|z| < 1} such that f(z9) = 2o. (Hint: you may need to
use the sequence of functions {f,}.)

Since f(z) # z for any z € {|z| = 1}, the infimum
d=1inf{|f(z) — 2| | |2| =1} > 0.
For any n > 2 and any z € {|z| = 1}, we have
1 1 9
— ) — — —— < 2
(ul2) = 2) ~ (F) = D) = HF < - < 3
In particular, f,(z) — 2z # 0 holds.

Since 3 =sin £, we can continuously define arg(f(z) —z) and arg(f,(z) —z)
on {|z| = 1} such that

larg(f(2) — 2) — arg(fu(2) — 2)| < g.

When we go around {|z| = 1} once, the amount of the change of arg(f(z) —
z) and arg(f,(z) — z) are both integer multiples of 27, so they are actually
equal to each other.
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This can be written as the mathematical formula

Mz: Mz
7|{Z|=1 f(z)—z d %zzl fn(Z)—z dz.

Since f,(z) — z has a unique zero in {|z| < 1}, we have f\z\:l (];Z((ZZ))__?/dz =
27i. So §|Z|:1 (J;r((zz))__?/dz = 2mi holds, which implies f(z) — z has a unique zero

in {|z| < 1}.

(4) (1 point) Without assuming f(z) # z on {|z| = 1}, please show that there
exists zy € {|z| < 1} such that f(z) = zo.

Suppose that there exists zp € {|z| = 1} such that f(zy) = 2o, then this is
our desired fixed point.

Otherwise, if f(z) # z for any z € {|z| = 1}, subproblem (3) implies that
there exists zg € {|z] < 1} C {|z| < 1}, such that f(z) = 2.



