
MATH 185-4 FINAL SOLUTION

1. (8 points) Determine whether the following statements are true of false, no
justification is required.

(1) (1 point) Let D be a domain and let u, v : D → R be two harmonic functions,
then u+ iv is analytic on D.

False. u and v should satisfy the Cauchy–Riemann equation. For example,
for harmonic function u(x, y) = x and v(x, y) = 0, u+ iv is not analytic.

(2) (1 point) Let D be a domain and let f : D → C be an analytic function, then
f(z)dz is a closed form on D.

True. This is a theorem on the book. You can also directly check that
f(z)dz = f(x, y)dx + if(x, y)dy is a closed form, by using Cauchy–Riemann
equation.

(3) (1 point) Let f : C → C be an analytic function. Then for any z0 ∈ C, f(z)
equals a power series centered at z0, and the radius of convergence of this
power series is ∞.

True. This is a theorem on the book: analytic functions have power series
expansions, and the radius of convergence is the radius of the disc where f is
(can be extended to) analytic.

(4) (1 point) If f : {1 < |z| < 2} → C is an analytic function, then there exist
analytic functions f1 : {|z| < 2} → C and f2 : {|z| > 1} → C such that
f = f1 − f2 on {1 < |z| < 2}.

True. This is just the Laurant decomposition.

(5) (1 point) For the function f(z) = sin 1
z
, z = 0 is a pole.

False. If z = 0 is a pole, limz→0 sin
1
z
should be ∞. However, for { 1

nπ
}, we

have 1
nπ

→ 0 and f( 1
nπ
) = sinnπ = 0. Moreover, this is actually an essential

singularity, since for { 1
(2n+ 1

2
)π
}, we have f( 1

(2n+ 1
2
)π
) = 1.
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(6) (1 point) Let D be a domain and let f : D → C be an analytic function, then
for any z0 ∈ D, the residue satisfies Res[f(z), z0] = 0.

True. The residue at z0 is the coefficient of the (z − z0)
−1 term in the

Laurent expansion. Since f is analytic, there is always no (z − z0)
−1 term.

(7) (1 point) Let D be a bounded domain with piecewise smooth boundary, and
let f be a meromorphic function on D that extends to be analytic on ∂D and

never vanishes on ∂D. If
∮

∂D

f ′(z)
f(z)

dz = 4πi, then f has exactly two zeros in

D.

False. The statement only holds for analytic functions, but not for mero-
morphic functions. For a meromorphic function, the line integral equals 4πi
implies that the number of zeros minus the number of poles is equal to 2.

(8) (1 point) Let {fn} be a sequence of univalent analytic functions defined on
a domain D, and {fn} uniformly converges to f : D → C, then f is also
univalent.

False. It is possible that f is a constant function. For example, we can take
D = {|z| < 1} and fn(z) =

z
n
, then the uniform limit is f(z) = 0.



2. (10 points) Please briefly answer the following questions.

(1) (2 points) Let D ⊂ C be a domain and f : D → C be a continuous function.
What is the definition of ”f is an analytic function on D”?

For any point z0 ∈ D, the complex derivative f ′(z0) = limz→z0
f(z)−f(z0)

z−z0

exits, and the complex derivative f ′ : D → C is a continuous function.

(2) (2 points) Let f : {|z − z0| < 2} → C be an analytic function, please write
f(z0) as a complex line integral. (Cauchy’s integral formula)

Cauchy integral formula:

f(z0) =
1

2πi

∮

|z−z0|=r

f(z)

z − z0
dz, any r ∈ (0, 2).

(3) (2 points) Let f : {1 < |z| < 2} → C be an analytic function, then what is
the Laurent expansion of f?

The Laurent expansion is to express f as
∑∞

k=−∞ akz
k, where

ak =
1

2πi

∮

|w|=r

f(w)w−k−1dw

for any r ∈ (1, 2).

(4) (2 points) Let f : {0 < |z − z0| < 1} → C be an analytic function, then what
is the residue of f at z0? Please also write it as a complex line integral. ba
The residue of f at z0 is the coefficient of (z− z0)

−1 in the Laurent expansion

of f , which is equal to 1
2πi

∮

|z−z0|=r
f(z)dz for any r ∈ (0, 1).

(5) (2 points) Let D be a bounded domain with piecewise smooth boundary, and
let f : D → C be an analytic function that extends to be analytic on ∂D

and never equals 0 on ∂D. Please write the number of zeros of f in D as a
complex line integral.

The number of zeros of f in D is equal to

1

2πi

∮

∂D

f ′(z)

f(z)
dz.



3. (10 points) Let f : C → C be an analytic function, and suppose

f(z) = u(x, y) + iv(x, y)

for two real valued functions u and v. Please show that

g(z) = u(x,−y)− iv(x,−y)

is also an analytic function on C.

Let U(x, y) = u(x,−y) and V (x, y) = −v(x,−y). Then we need to check that
g(z) = U(x, y) + iV (x, y) satisfies the Cauchy–Riemann equation.

Since f is analytic, we know that the Cauchy–Riemann equation holds:

ux(x, y) = vy(x, y) and uy(x, y) = −vx(x, y).

For the function g = U + iV , we have Ux(x, y) = ux(x,−y) and Vy(x, y) =
vy(x,−y) = ux(x,−y), so Ux(x, y) = Vy(x, y) holds. We also have Uy(x, y) =
−uy(x,−y) and Vx(x, y) = −vx(x,−y) = uy(x,−y), so Uy(x, y) = −Vx(x, y) hold-
s. This shows that U and V satisfy the Cauchy–Riemann equation.

Since f is analytic on C, all the first order partial derivatives of u and v are
continuous. The above equalities imply that all first order partial derivatives of U
and V are also continuous. So g is an analytic function.

Alternatively, you can check that g(z) = f(z̄) and it is an analytic function. For
the complex derivative

g′(z) = lim
∆z→0

g(z +∆z) − g(z)

∆z
= lim

∆z→0

f(z +∆z)− f(z)

∆z
= lim

∆z→0

(f(z +∆z)− f(z)

∆z

)

= f ′(z).

So the complex derivative of g(z) exists, which is equal to f ′(z). This is a contin-
uous function since f ′ is continuous.



4. (10 points) Please compute the complex line integral
∮

|z|=3

cos z

(z − 1)(z + 1)2
dz.

The zeros of the denominator are z = 1 and z = −1. So for any small ǫ > 0 (say
smaller than 1), since cos z

(z−1)(z+1)2
is analytic on {|z| < 3} \ {±1}, we have

∮

|z|=3

cos z

(z − 1)(z + 1)2
dz =

∮

|z−1|=ǫ

cos z

(z − 1)(z + 1)2
dz +

∮

|z+1|=ǫ

cos z

(z − 1)(z + 1)2
dz.

For the first term, we have

1

2πi

∮

|z−1|=ǫ

cos z

(z − 1)(z + 1)2
dz =

1

2πi

∮

|z−1|=ǫ

cos z
(z+1)2

(z − 1)
dz =

( cos z

(z + 1)2

)

|z=1 =
cos 1

4
.

For the second term, we have

1

2πi

∮

|z+1|=ǫ

cos z

(z − 1)(z + 1)2
dz =

1

2πi

∮

|z+1|=ǫ

cos z
z−1

(z + 1)2
dz =

( cos z

z − 1

)′
|z=−1 = −sin 1

2
−cos 1

4
.

So
∮

|z|=3

cos z

(z − 1)(z + 1)2
dz = 2πi(

cos 1

4
− sin 1

2
− cos 1

4
) = −iπ sin 1.



5. (10 points) Let D be a domain, and let f, g : D → C be two analytic functions.
Suppose that g is not constantly zero and |f(z)| ≤ |g(z)| for all z ∈ D.

(1) (2 points) On which subset of D is the function h(z) = f(z)
g(z)

defined? (It is

possible that g(z) = 0 for some z ∈ D.)

The function h(z) = f(z)
g(z)

is defined on the subset of D where g is not equal

to 0, i.e.
{z ∈ D | g(z) 6= 0}.

(2) (8 points) Please show that h(z) can be extended to an analytic function on
D.

Since {z ∈ D | g(z) 6= 0} is an open set, and both f and g are analytic,

h(z) = f(z)
g(z)

is analytic on {z ∈ D | g(z) 6= 0}. So we need only to take care of

the zero set of g, i.e. Zg = {z ∈ D | g(z) = 0}.
Since g is not constantly zero, the zero set Zg consists of isolated points. So

for any z0 ∈ Zg, there exists ǫ > 0 such that {|z − z0| < ǫ} ∩ Zg = {z0}.
On the set {0 < |z − z0| < ǫ}, h(z) = f(z)

g(z)
is an analytic function, and

|h(z)| = | f(z)
g(z)

| ≤ 1. Since h is bounded near z0, z0 is a removable singularity

of h(z). So we can extend h(z) to z0 analytically.
This shows that all the zeros of g(z) in D are removable singularities of

h(z). So we can extend h to an analytic function on D.



6. (10 points) Please compute
∫ ∞

0

√
x

x4 + 16
dx.

(Your answer must be a real number!)

We consider the function f(z) =
√
z

z4+6
on C \ (−∞, 0], where

√
z is defined by

√

|z|eiArgz
2 with Argz ∈ (−π, π). Then f is an analytic function on C \ (−∞, 0].

Then we compute the complex line integral of f(z) on the boundary of

DR = {z ∈ C | 0 < |z| < R, Rez > 0, Imz > 0}.
Since the singularity of f(z) in DR is only 2ei

π

4 ,we have
∮

∂DR

f(z)dz = 2πi · Res[
√
z

z4 + 16
, 2ei

π

4 ] = 2πi
(

√
z

(z4 + 16)′
)

|
z=2ei

π
4
=

√
2

16
πe−iπ

8 .

On the other hand,
∮

∂DR

f(z)dz consists of three terms: integral along [0, R],

integral along the quarter circle γR and integral along [Ri, 0i]. So we have
∮

∂DR

f(z)dz =

∫ R

0

√
x

x4 + 16
dx+

∫

γR

√
z

z4 + 16
dz −

∫ R

0

√
ix

(ix)4 + 16
· idx.

By the ML-estimation, we have

|
∫

γR

√
z

z4 + 16
dz| ≤

√
R

R4 − 16
· π
2
R =

πR
3
2

2(R4 − 16)
.

This term goes to 0 as R goes to ∞.
we let R going to infinity, then

√
2

16
πe−iπ

8 = lim
R→∞

∮

∂DR

f(z)dz =

∫ ∞

0

√
x

x4 + 16
dx−

∫ ∞

0

√
ix

(ix)4 + 16
·idx = (1−ei

3π
4 )

∫ ∞

0

√
x

x4 + 16
dx.

So we get
∫ ∞

0

√
x

x4 + 16
dx =

√
2

16
π · e−iπ

8

1− ei
3π
4

=

√
2

16
π · 1

ei
π

8 − ei
7π
8

=

√
2π

32 cos π
8

.



7. (10 points) Please find the number of zeros of the polynomial

p(z) = z7 + iz5 + 1

on the upper half plane {z ∈ C | Imz > 0}.

For any z ∈ C with |z| > 2, we have |p(z)| ≥ |z7| − |z5| − 1 ≥ (|z2| − 2) · |z5| > 0.
So we only need to compute the number of zeros in the half disc

DR = {z ∈ C | |z| < R, Imz > 0},
for large R.

For large enough R, we want to define arg(p(z)) continuously on ∂DR, and check
how much does the argument change when we goes along ∂DR once.

Since R is very large, when z goes from 0 to R on the real axis, p(z) goes from
p(0) = 1 to p(R) ≈ R7. Since p(z) never crosses the y-axis for z ∈ [0, R], we have
arg(p(0)) = 0 and arg(p(R)) ≈ 0.

Since p(−R) ≈ −R7 and the z7 term makes the main contribution of arg(p(z)) on
the half circle {z ∈ C | |z| = R, imz ≥ 0}. So we can continuously define arg(p(z))
on the half circle such that arg(p(−R)) ≈ 7π.

When z goes from −R to 0, p(z) only crosses the y-axis once, since z7+1 has only
one real solution: z = −1. For z ∈ [−R,−1), p(z) lies in the third quadrant. Since
arg(p(−R)) ≈ 7π and p(−1) = −i, we can continuously defined arg(p(z)) such that
arg(p(−1)) = 7π + π

2
= 15

2
π. For z ∈ (−1, 0], p(z) lies in the fourth quadrant. Since

p(0) = 1, we end up with arg(p(0)) = 8π when we goes around the boundary of the
half disc once.

So p(z) = z7 + iz5 + 1 has four zeros on the upper half plane.



8. (12 points) Let f : {|z| < 1 + ǫ} → C be an analytic function for some ǫ > 0.
Suppose that |f(z)| ≤ 1 for any z ∈ {|z| ≤ 1}, please follow the following steps and
show that there exists z0 ∈ {|z| ≤ 1} such that f(z0) = z0.

(This is the complex analysis version of the Brouwer fixed point theorem.)

(1) (2 points) For any n ≥ 1, let fn(z) = (1 − 1
n
)f(z). Please prove that {fn}

uniformly converges to f on {|z| ≤ 1}.

For any ǫ > 0, take N = [1
ǫ
]. Then for any n > N and any z ∈ {|z| ≤ 1},

we have

|fn(z)− f(z)| = 1

n
|f(z)| ≤ 1

n
< ǫ.

So {fn} uniformly converges to f on {|z| ≤ 1}.

(2) (4 points) For each n, please show that there is a unique zn ∈ {|z| < 1} such
that fn(zn) = zn.

On the boundary of the disc {|z| = 1}, for any n, we have

|z| = 1 > 1− 1

n
≥ (1− 1

n
)|f(z)| = |fn(z)|.

So Rouche’s theorem implies that z − fn(z) has the same number of zeros
in {|z| < 1} as the function z. Since z has a unique zero in {|z| < 1}, so does
z − fn(z). Suppose this unique zero os zn, then clearly fn(zn) = zn holds.

(3) (5 points) Suppose that f(z) 6= z for any z ∈ {|z| = 1}, please show that there
exists a unique z0 ∈ {|z| < 1} such that f(z0) = z0. (Hint: you may need to
use the sequence of functions {fn}.)

Since f(z) 6= z for any z ∈ {|z| = 1}, the infimum

δ = inf {|f(z)− z| | |z| = 1} > 0.

For any n > 2
δ
and any z ∈ {|z| = 1}, we have

|(fn(z)− z)− (f(z)− z)| = 1

n
|f(z)| ≤ 1

n
<

δ

2
≤ |f(z)− z|

2
.

In particular, fn(z)− z 6= 0 holds.
Since 1

2
= sin π

6
, we can continuously define arg(f(z)−z) and arg(fn(z)−z)

on {|z| = 1} such that

|arg(f(z)− z)− arg(fn(z)− z)| ≤ π

6
.

When we go around {|z| = 1} once, the amount of the change of arg(f(z)−
z) and arg(fn(z) − z) are both integer multiples of 2π, so they are actually
equal to each other.



This can be written as the mathematical formula
∮

|z|=1

(f(z)− z)′

f(z)− z
dz =

∮

|z|=1

(fn(z)− z)′

fn(z)− z
dz.

Since fn(z)− z has a unique zero in {|z| < 1}, we have
∮

|z|=1
(fn(z)−z)′

fn(z)−z
dz =

2πi. So
∮

|z|=1
(f(z)−z)′

f(z)−z
dz = 2πi holds, which implies f(z)− z has a unique zero

in {|z| < 1}.

(4) (1 point) Without assuming f(z) 6= z on {|z| = 1}, please show that there
exists z0 ∈ {|z| ≤ 1} such that f(z0) = z0.

Suppose that there exists z0 ∈ {|z| = 1} such that f(z0) = z0, then this is
our desired fixed point.
Otherwise, if f(z) 6= z for any z ∈ {|z| = 1}, subproblem (3) implies that

there exists z0 ∈ {|z| < 1} ⊂ {|z| ≤ 1}, such that f(z0) = z0.


