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Q1. [30 pts] True or False
(1) [2 pts] Random forests usually perform better than AdaBoost when your dataset has mislabeled data points.
 True © False

(2) [2 pts] The discriminant function computed by kernel methods are a linear function of its parameters, not
necessarily a linear function of the inputs.
 True © False

(3) [2 pts] The XOR operator can be modeled using a neural network with a single hidden layer (i.e. 3-layer
network).
 True © False

(4) [2 pts] Convolutional neural networks are rotation invariant.
© True  False

(5) [2 pts] Making a decision tree deeper will assure better fit but reduce robustness.
 True © False

(6) [2 pts] Bagging makes use of the bootstrap method.
 True © False

(7) [2 pts] K-means automatically adjusts the number of clusters.
© True  False

(8) [2 pts] Dimensionality reduction can be used as pre-processing for machine learning algorithms like decision
trees, kd-trees, neural networks etc.
 True © False

(9) [2 pts] K-d trees guarantee an exponential reduction in the time it takes to find the nearest neighbor of an
example as compared to the naive method of comparing the distances to every other example.
© True  False

(10) [2 pts] Logistic regression is equivalent to a neural network without hidden units and using cross-entropy loss.
 True © False

(11) [2 pts] Convolutional neural networks generally have fewer free parameters as compared to fully connected
neural networks.
 True © False

(12) [2 pts] K-medoids is a kind of agglomerative clustering.
© True  False

(13) [2 pts] Whitening the data doesn’t change the first principal direction.
© True  False

(14) [2 pts] PCA can be kernelized.
 True © False

(15) [2 pts] Performing K-nearest neighbors with K = N yields more complex decision boundaries than 1-nearest
neighbor.
© True  False
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Q2. [30 pts] Multiple Choice
(1) [3 pts] Which of the following guidelines is applicable to initialization of the weight vector in a fully connected

neural network.

© Should not set it to zero since otherwise it will
cause overfitting

 Should not set it to zero since otherwise
(stochastic) gradient descent will explore a very
small space

© Should set it to zero since otherwise it causes
a bias

© Should set it to zero in order to preserve sym-
metry across all neurons

(2) [3 pts] Duplicating a feature in linear regression

 Can reduce the L2-Penalized Residual Sum
of Squares.

 Does not reduce the Residual Sum of Squares
(RSS).

© Can reduce the L1-Penalized Residual Sum of
Squares (RSS).

© None of the above

(3) [3 pts] Which of the following is/are forms of regularization in neural networks.

 Weight decay

 L2 regularization

 L1 regularization

 Dropout

(4) [3 pts] We are given a classifier that computes probabilities for two classes (positive and negative). The following
is always true about the ROC curve, and the area under the ROC curve (AUC):

© An AUC of 0.5 represents a classifier that
performs worse than random.

 We generate an ROC curve by varying the
discriminative threshold of our classifier.

 The ROC curve allows us to visualize the
tradeoff between true positive and false positive
classifications.

 The ROC curve monotonically increases.

(5) [3 pts] The K-means algorithm:

© Requires the dimension of the feature space
to be no bigger than the number of samples

© Has the smallest value of the objective func-
tion when K = 1

 Minimizes the within class variance for a given

number of clusters

© Converges to the global optimum if and only
if the initial means are chosen as some of the sam-
ples themselves

© None of the above

(6) [3 pts] Suppose when you are training your convolutional neural network, you find that the training loss just
doesn’t go down after initialization. What could you try to fix this problem?

 Change the network architecture

 Change learning rates

 Ensure training data is being read correctly

 Find a better model

 Normalize the inputs to the network

© Add a regularization term
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(7) [3 pts] Logistic regression:

 Minimizes cross-entropy loss

© Has a simple, closed form analytical solution

 Models the log-odds as a linear function

 Is a classification method to estimate class
posterior probabilities

(8) [3 pts] Select all the true statements.

© The first principal component is unique up to
a sign change.

© The last principal component is unique up to
a sign change.

© All principal components are unique up to a
sign change.

 If some features are linearly dependent, at
least one singular value is zero.

© If some features are correlated, at least one
singular value is zero.

(9) [3 pts] Select all the choices that make the following statement true:
In (a), the training error does not increase as (b) increases.

 a: K-means,
b: number of iterations

© a: Training neural nets with back propagation
using batch gradient decent,
b: number of iterations

© a: Training neural nets with back propagation
using stochastic gradient decent,
b: number of iterations

 a: Regression Trees with square loss,
b: depth of the tree

© a: Random Forest Classifier,
b: number of trees in the forest

 a: Least squares,
b: number of features

(10) [3 pts] Neural networks:

© Optimize a convex objective function

© Can only be trained with stochastic gradient
descent

 Can use a mix of different activation functions

 Can be made to perform well even when the
number of parameters/weights is much greater
than the number of data points.
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Q3. [15 pts] Nearest Neighbors and Bayes risk
In this problem, we want to investigate whether given enough training examples, the Bayes decision rule gives more
accurate results that nearest neighbors.

A life insurance company needs to estimate whether a client is at risk of dying in the year to come, based on his
age and blood pressure. We call x = [A,B] (A=Age, B=Blood pressure) the two dimensional input vector and y
the outcome (y = 1 if the client dies and y = −1 otherwise). The insurance company has a lot of data, enough to
estimate accurately with Parzen windows the posterior probability P (y = 1|x). This is represented in a diagram in
Figure 1.

Figure 1: Draw your answer to the Nearest Neighbor and Bayes risk problem. Note that the distribution P (x) is
assumed to be uniform across the area shown in the figure.

Note: No worries, nobody died, this is a fictitious example. For simplicity we have 4 regions in which P (y = 1|x) is
constant, and the distribution P (x) is assumed to be uniform across the area shown in the figure.

Let us name the different regions:

R1 :P (y = 1|x) = 0

R2 :P (y = 1|x) = 0.1

R3 :P (y = 1|x) = 0.9

R4 :P (y = 1|x) = 1

(1) [2 pts] Draw on the figure the Bayes optimum decision boundary with a thick line.

(2) [2 pts] What is the Bayes risk in each of the four regions (the Bayes risk is the probability of error of the
optimum Bayes classifier). R1: EBayes = 0
R2: EBayes = 0.1
R3: EBayes = 0.1
R4: EBayes = 0

(3) [4 pts] Assume we have lots and lots of samples due to which we can assume that the nearest neighbor of any
sample lies in the same region as that sample. Now consider any sample, say, x which falls in region Ri. For
i ∈ {1, 2, 3, 4}, find the probability that x and its nearest neighbor belong to different classes (that is, have
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different labels):

1. If they both fall in R1: 0
2. If they both fall in R2: x 0.9 (+1) x 0.1 (+1) + x 0.1 (+1) x 0.9 (+1) ⇒ 2 * 0.1 * 0.9 = 0.18
3. If they both fall in R3: same as R2: 2 * 0.1 * 0.9
4. If they both fall in R4: 0

(4) [2 pts] What is the nearest neighbor error rate ENN in each region:

R1: ENN = 0
R2: ENN = 0.18
R3: ENN = 0.18
R4: ENN = 0

(5) [5 pts] Now let us generalize the previous results to the case where the posterior probabilities are:

R1 :P (y = 1|x) = 0

R2 :P (y = 1|x) = p

R3 :P (y = 1|x) = (1− p)
R4 :P (y = 1|x) = 1

where p is a number between 0 and 0.5.
After recalculating the results of the previous questions, give an upper bound and a lower bound of ENN in
terms of EBayes.

R1 :EBayes = 0ENN = 0

R2 :EBayes = pENN = 2p(1− p)
R3 :EBayes = pENN = 2p(1− p)
R4 :EBayes = 0ENN = 0

EBayes <= ENN <= 2 EBayes(1-EBayes)
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Q4. [11 pts] Curse of dimensionality
When the dimension of input space d is large, the performance of the nearest neighbor algorithm (and other local
methods such as “Parzen windows”) tends to deteriorate. This phenomenon is known as the “curse of dimensionality”.
In the following questions, we will assume that we have a training set of fixed size N and that all features are uniformly
distributed on [0, 1]. Associated with each test example x is a predicted response y corresponding to the average of
the responses associated to the training examples that are near x.

(1) [1 pt] Suppose we have only one feature (d = 1) and we want to make prediction using only training examples
that are within 10% of the input range. For instance, to predict the response y of x = 0.6, we will use the
training examples that fall in the range [0.55, 0.65] only. On average, what fraction of the training examples
will we use to make each prediction?

10%

(2) [1 pt] Now suppose that we have two features (d = 2) and we want to predict using only training examples that
are within 10% of the input range in both dimensions. For instance, to predict the response y of x = (0.6, 0.35),
we will use the training examples that fall in the range [0.55, 0.65] for the first feature and [0.3, 0.4] for the
second one. On average, what fraction of the training examples will we use to make each prediction?

1%

(3) [4 pts] Generalize your response for the general case of any dimension d. Argue that a drawback of methods
based on nearest neighbors is that, when d is large, there are very few training examples near any test example.

limd⇒∞(0.1)d = 0

(4) [5 pts] Now suppose that we wish to make a prediction of a test example x by creating a d-dimensional
hypercube centered around x that contains on average 10% of the training examples. For d=1, 2, 3, and 100,
what is the length of each side of the hypercube? Explain the implication of your answer on the performance
of the nearest neighbors algorithm.

d = 1: 0.1, d = 2: 0.3, d = 5 = 0.5, d = 100: 0.98. In high dimensions, you end up having to look at all the points.
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Q5. [22 pts] Decision Trees and Random Forests
Consider constructing a decision tree on data with d features and n training points where each feature is real-valued
and each label takes one of m possible values. The splits are two-way, and are chosen to maximize the information
gain. We only consider splits that form a linear boundary parallel to one of the axes. In parts (a), (b) and (c) we
will consider a standalone decision tree and not a random forest, so no randomization.

(1) [4 pts] Prove or give a counter-example: For every value of m > 3, there exists some probability distribution
on m objects such that its entropy is less than −1. False. The entropy is always non-negative since −p log p
is non-negative when p ∈ [0, 1].

(2) [4 pts] Prove or give a counter-example: In any path from the root split to a leaf, the same feature will never
be split on twice.

False. Example: one dimensional feature space with training poins of two classes x and o arranged as
xxxooooxxx.

(3) [4 pts] Prove or give a counter-example: The information gain at the root is at least as much as the information
gain at any other node.

False. Example: the XOR function.

(4) [4 pts] One may be concerned that the randomness introduced in random forests may cause trouble, for instance,
some features or samples may not be considered at all. We will investigate this phenomenon in the next two
parts.

Consider n training points in a feature space of d dimensions. Consider building a random forest with t binary
trees, each having exactly h internal nodes. Let f be the number of features randomly selected at each node.
In order to simplify our calculations, we will let f = 1. For this setting, compute the probability that a certain
feature (say, the first feature) is never considered for splitting.

The probability that it is not considered for splitting in a particluar node of a particular tree is 1 − 1
d . The

subsampling of f = 1 features at each node is independent of all others. There are a total of th nodes and
hence the final answer is (1− 1

d )th.

(5) [3 pts] Now let us investigate the concern regarding the random selection of the samples. Suppose each tree
employs n bootstrapped training samples. Compute the probability that a particular sample (say, the first
sample) is never considered in any of the trees.

The probability that it is not considered in one of the trees is (1 − 1
n )n. Since the choice for every tree is

independent, the probability that it is not considered in any of the trees is (1− 1
n )nt.

(6) [3 pts] Compute the values of the probabilities you obtained in the previous two parts for the case when there
are n = 2 training points, d = 2 dimensions, t = 10 trees of depth h = 4 (you may leave your answer in

a fraction and exponentiated form, e.g., as
(

51
100

)2
. What conclusions can you draw from your answer with

regard to the concern mentioned in the beginning of the problem?
1

240 and 1
220 . It is quite unlikely that a feature or a sample will be missed.
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Q6. [12 pts] Elastic net regularization
A powerful method for regularizing linear regression is called elastic net regularization, which combines ridge regres-
sion (L2 regularization) and Lasso (L1 regularization).

Observe that linear regression can be probabilistically modeled as P (y(k)|x(k),w, σ2) ∼ N (wTx(k), σ2). This means
P (y(k)|x(k),w, σ2) =

1√
2πσ

exp(− (y(k) −wTx(k))2

2σ2
)

It is then possible to show that ridge regression is equivalent to MAP estimation with a Gaussian prior, and Lasso
is equivalent to MAP estimation with a Laplace prior.

Let us assume a different prior distribution. Assume each weight wj is i.i.d, drawn from a distribution such that
P (wj) = q exp(−α1|wj | − α2w

2
j ), where q, α1, α2 are fixed constants. Our training set is (x(k), y(k)), ...(x(n), y(n)).

(1) [6 pts] Show that the MAP estimate for w is equivalent to minimizing the following risk function, for some
choice of constants λ1, λ2:

R(w) =

n∑
k=1

(y(k) −wTx(k))2 + λ1‖w‖1 + λ2‖w‖22

The posterior of w is:

P (w|x(k), y(k)) ∝ (

n∏
k=1

N (y(k)|wTx(k), σ2)) · P (w) = (

n∏
k=1

N (y(k)|wTx(k), σ2)) ·
D∏

j=1

P (wj)

Taking the log-probability, we want to maximize:

l(w) =

n∑
k=1

logN (y(k)|wTx(k), σ2) +

D∑
j=1

logP (wj)

=

n∑
k=1

log(
1√
2πσ

exp(− (y(k) −wTx(k))2

2σ2
)) +

D∑
j=1

log(q exp(−α1|wj | − α2w
2
j ))

=

n∑
k=1

− (y(k) −wTx(k))2

2σ2
− α1

D∑
j=1

|wj | − α2

D∑
j=1

w2
j + n log(

1√
2πσ

) +D log(q)

∝ −
n∑

k=1

(y(k) −wTx(k))2 − 2σ2α1||w||1 − 2σ2α2||w||22 + n log(
1√
2πσ

) +D log(q)

This is equivalent to minimizing the following function:

R(w) =

n∑
k=1

(y(k) −wTx(k))2 + λ1‖w‖1 + λ2‖w‖22

where λ1 = 2σ2α1, λ2 = 2σ2α2.
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(2) [2 pts] Suppose we scale both λ1 and λ2 by a positive constant c. The graph below represents the value of a
single one of the weights, wi graphed against the value of c. Out of the following set of values for λ1, λ2, which
best corresponds to the graph (select exactly one option)?

 λ1 = 1, λ2 = 0 © λ1 = 0, λ2 = 1

If we had presented the following graph instead, then the correct choice would be the other choice:

These graphs are called ”regularization paths.”

(3) [2 pts] Explain why your choice in (b) results in the graph.

That choice is equivalent to just doing Lasso/L1 regularization, which induces sparsity.

(4) [2 pts] What is the advantage of using Elastic net regularization over using a single regularization term of
||w||p, where 1 < p < 2?

The other option does not induce sparsity. Elastic net gives us the option of inducing sparsity.

Note: having more hyperparameters is a disadvantage of Elastic net, not an advantage (more difficult to tune, and
more difficult optimization problem).
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Q7. [14 pts] Neural Networks
(1) [6 pts] Here is the historical LeNet Convolutional Neural Network architecture of Yann LeCun et al. for digit

classification that we’ve discussed in class. Here, the INPUT layer takes in a 32x32 image, and the OUTPUT
layer produces 10 outputs. The notation 6@28x28 means 6 matrices of size 28x28.

If the parameters of a given layer are the weights that connect to its inputs,

• Given that the input size is 32x32, and the Layer 1 size is 28x28, what’s the size of the convolutional filter
in the first layer (i.e. how many inputs is each neuron connected to)? 5× 5

• How many independent parameters (weight and bias) are in layer C1? 5× 5× 6× 1 + 6 = 156

• How many independent parameters (weight and bias) are in layer C3? 5× 5× 16× 6 + 16 = 2416

• How many independent parameters (weight and bias) are in layer F6? 120× 84 + 84 = 10164
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(2) [8 pts] Consider a three layer fully-connected network with n1, n2, n3 neurons in three layers respectively. Inputs
are fed into the first layer. The loss is mean squared error E, and the non-linearity is a sigmoid function. Let
the label vector be t of size n3. Let each layer output vector be yi and input vector be zi, both of size ni. Let
the weight between layer i and layer i+ 1 be Wii+1. The j-th element in yi is defined by yji , same for zji . The
weight connecting k-th and l-th neuron in i, i + 1 layers is defined by W kl

ii+1 (You don’t need to consider bias
in this problem).

Input #1

Input #2

Input #3

Input #4

Output #1

Output #2

Hidden
layer
(L2)

Input
layer
(L1)

Output
layer
(L3)

Here is a summary of our notation:

� σ denotes the activation function for L2 and L3, σ(x) = 1
1+e−x . There is no activation applied to the input

layer.

� z
(j)
i =

∑P
k=1W

kj
i−1ix

(k)
i−1

� y
(j)
i = σ

(∑P
k=1W

kj
i−1ix

(k)
i−1

)
Now solve the following problems.

• Find ∂E

∂zj
3

in terms of yj3.

−2yj3(1− yj3)(tj − yj3)

• Find ∂E
∂yk

2
in terms of elements in W23 and ∂E

∂zj
3

.∑n3

j=1W
kj
23

∂E

∂zj
3

• Find ∂E

∂Wkj
23

in terms of yk2 , yj3 and tj .

yk2
∂E

∂zj
3

= −2yj3(1− yj3)(tj − yj3)yk2

• If the input to a neuron in max-pooling layer is x and the output is y = max(x), derive ∂y
∂xi

.
∂y
∂xi

= 1 if and only if xi = max(x), otherwise ∂y
∂xi

= 0.
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Q8. [16 pts] The dimensions are high! And possibly hard too.
In this problem, we will derive a famous result called the “Johnson-Lindenstrauss” lemma. Suppose you are given n
arbitrary vectors x1, . . . , xn ∈ Rd×1. Let k = 320 log n. Now consider a matrix A ∈ Rk×d that is obtained randomly
in the following manner: every entry of the matrix is chosen independently at random from N (0, 1). Define vectors
z1, . . . , zn ∈ Rk×1 as zi = 1√

k
Axi for every i ∈ {1, . . . , n}.

(1) [4 pts] For any given i ∈ {1, . . . , n}, what is the distribution of the random vector Axi? Your answer should be
in terms of the vector xi. To simplify notation, let v = xi. Clearly, Av is a zero-mean jointly Gaussian vector.
Let us compute the covariance: E[(Av)(Av)T ]. Letting aTj denote the jth row of A, we have that the jth entry

of vector Av is aTj v, and hence the (i, j)th entry of (Av)(Av)T is (aTi vv
Taj). It follows that the (i, j)th entry of

E[(Av)(Av)T ] is E[aTi vv
Taj ] = E[vTaia

T
j v] = vTE[aia

T
j ]v. Now we have E[aia

T
j ] = I if i = j and 0 otherwise.

Thus the covariance matrix is a diagonal matrix with each entry on the diagonal equal to ‖xi‖22.

(2) [4 pts] For any distinct i, j ∈ {1, . . . , n}, derive a relation between E[||A(xi − xj)||22] and the value of ||xi −
xj ||22? More points for deriving the relation using your answer from part (1) above. Without using part 1:
E[||A(xi − xj)||22] = E[(xi − xj)TATA(xi − xj)] = (xi − xj)TE[ATA](xi − xj). E[ATA] = kI and hence the
answer is k||(xi − xj)||22.

Using part 1: Now let v = xi − xj . Observe that E[||Av||22] is simply the sum of the variances of each entry of
the vector Av. We computed these variances in part (1) as being equal to ‖v‖22. Since vector Av has length k,
the sum of the variances equals k‖v‖22.

(3) [4 pts] It can be shown that for any fixed vector v, the random matrix A has the property that

3

4
||v||22 ≤ ||Av||22 ≤

5

4
||v||22

with probability at least 1− 1
n4 . Using this fact, show that with probability at least 1− 1

n2 , every pair (zi, zj)
simultaneously satisfies 3

4 ||x
i−xj ||22 ≤ ||zi− zj ||22 ≤ 5

4 ||x
i−xj ||22. (Think of how you would bound probabilities

of multiple events. Only requires a very basic fact about probability and a little thought.) Specifically, let
Eij denote the event that the pair (zi, zj) does not satisfy the above bound. Then letting v = xi−xj , we have
that P (Eij) ≤ 1

n4 . The probability that any of the pairs fail is P (∪ijEij) ≤
∑

ij P (Eij) ≤ n2 1
n4 = 1

n2 .

(4) [4 pts] Describe, in at most two sentences, the usefulness of this result. (Think of n and d as having very
large values, for instance, several billions). Helps in reducing the dimensionality of the feature space and is
especially useful for problems where only the pairwise distances need to be preserved.
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