
CS 189
Spring 2014

Introduction to
Machine Learning Final

• You have 3 hours for the exam.

• The exam is closed book, closed notes except your one-page crib sheet.

• Please use non-programmable calculators only.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

• For true/false questions, fill in the True/False bubble.

• For multiple-choice questions, fill in the bubbles for ALL CORRECT CHOICES (in some cases, there may be
more than one). We have introduced a negative penalty for false positives for the multiple choice questions
such that the expected value of randomly guessing is 0. Don’t worry, for this section, your score will be the
maximum of your score and 0, thus you cannot incur a negative score for this section.
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First and last name of student to your right

For staff use only:
Q1. True or False /9
Q2. Multiple Choice /24
Q3. Softmax regression /11
Q4. PCA and least squares /10
Q5. Mixture of linear regressions /10
Q6. Training set augmentation /10
Q7. Kernel PCA /12
Q8. Autoencoder /14

Total /100
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Q1. [9 pts] True or False
(a) [1 pt] The singular value decomposition of a real matrix is unique.

© True © False

(b) [1 pt] A multiple-layer neural network with linear activation functions is equivalent to one single-layer perceptron
that uses the same error function on the output layer and has the same number of inputs.

© True © False

(c) [1 pt] The maximum likelihood estimator for the parameter θ of a uniform distribution over [0, θ] is unbiased.

© True © False

(d) [1 pt] The k-means algorithm for clustering is guaranteed to converge to a local optimum.

© True © False

(e) [1 pt] Increasing the depth of a decision tree cannot increase its training error.

© True © False

(f) [1 pt] There exists a one-to-one feature mapping φ for every valid kernel k.

© True © False

(g) [1 pt] For high-dimensional data, k-d trees can be slower than brute force nearest neighbor search.

© True © False

(h) [1 pt] If we had infinite data and infinitely fast computers, kNN would be the only algorithm we would study
in CS 189.

© True © False

(i) [1 pt] For datasets with high label noise (many data points with incorrect labels), random forests would generally
perform better than boosted decision trees.

© True © False
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Q2. [24 pts] Multiple Choice
(a) [2 pts] In Homework 4, you fit a logistic regression model on spam and ham data for a Kaggle Competition.

Assume you had a very good score on the public test set, but when the GSIs ran your model on a private test
set, your score dropped a lot. This is likely because you overfitted by submitting multiple times and changing
the following between submissions:

© λ, your penalty term

© η, your step size

© ε, your convergence criterion

© Fixing a random bug

(b) [2 pts] Given d-dimensional data {xi}Ni=1, you run principle component analysis and pick P principle compo-
nents. Can you always reconstruct any data point xi for i ∈ {1 . . . N} from the P principle components with
zero reconstruction error?

© Yes, if P < d

© Yes, if P < n

© Yes, if P = d

© No, always

(c) [2 pts] Putting a standard Gaussian prior on the weights for linear regression (w ∼ N (0, I)) will result in what
type of posterior distribution on the weights?

© Laplace

© Poisson

© Uniform

© None of the above

(d) [2 pts] Suppose we have N instances of d-dimensional data. Let h be the amount of data storage necessary for
a histogram with a fixed number of ticks per axis, and let k be the amount of data storage necessary for kernel
density estimation. Which of the following is true about h and k?

© h and k grow linearly with N

© h and k grow exponentially with d

© h grows exponentially with d, and k grows
linearly N

© h grows linearly with N , and k grows expo-
nentially with d

(e) [2 pts] Which of the these classifiers could have generated this decision boundary?

© Linear SVM

© Logistic regression

© 1-NN

© None of the above
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(f) [2 pts] Which of the these classifiers could have generated this decision boundary?

© Linear SVM

© Logistic regression

© 1-NN

© None of the above

(g) [2 pts] Which of the these classifiers could have generated this decision boundary?

© Linear SVM

© Logistic regression

© 1-NN

© None of the above

(h) [2 pts] You want to cluster this data into 2 clusters. Which of the these algorithms would work well?

© K-means © GMM clustering © Mean shift clustering
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(i) [2 pts] You want to cluster this data into 2 clusters. Which of the these algorithms would work well?

© K-means © GMM clustering © Mean shift clustering

(j) [2 pts] You want to cluster this data into 2 clusters. Which of the these algorithms would work well?

© K-means © GMM clustering © Mean shift clustering

The following questions are about how to help CS 189 TA Jonathan Snow to solve the homework.

(k) [2 pts] Jonathan just trained a decision tree for a digit recognition. He notices an extremely low training error,
but an abnormally large test error. He also notices that an SVM with a linear kernel performs much better
than his tree. What could be the cause of his problem?

© Decision tree is too deep

© Learning rate too high

© Decision tree is overfitting

© There is too much training data

(l) [2 pts] Jonathan has now switched to multilayer neural networks and notices that the training error is going
down and converges to a local minimum. Then when he tests on the new data, the test error is abnormally
high. What is probably going wrong and what do you recommend him to do?

© The training data size is not large enough.
Collect a larger training data and retrain it.

© Use a different initialization and train the net-
work several times. Use the average of predictions
from all nets to predict test data.

© Play with learning rate and add regularization
term to the objective function.

© Use the same training data but add two more
hidden layers.
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Q3. [11 pts] Softmax regression
Recall the setup of logistic regression: We assume that the posterior probability is of the form

p(Y = 1|x) =
1

1 + e−β
>x

This assumes that Y |X is a Bernoulli random variable. We now turn to the case where Y |X is a multinomial random
variable over K outcomes. This is called softmax regression, because the posterior probability is of the form

p(Y = k|x) = µk(x) =
eβ

>
k x∑K

j=1 e
β>

j x

which is called the softmax function. Assume we have observed data D = {xi, yi}Ni=1. Our goal is to learn the weight
vectors β1, . . . ,βK .

(a) [3 pts] Find the negative log likelihood of the data l(β1, . . . ,βK).

(b) [2 pts] We want to minimize the negative log likelihood. To combat overfitting, we put a regularizer on the
objective function. Find the gradient w.r.t. βk of the regularized objective

l(β1, . . . ,βK) + λ

K∑
k=1

‖βk‖2
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(c) [4 pts] State the gradient updates for both batch gradient descent and stochastic gradient descent.

(d) [2 pts] There are times when we’d like to consider the multiclass case to be a 1-vs.-all scenario with K binary
classifiers, and there are times when we’d like to attack the multiclass case with a multiclass classifier such as
softmax regression.

When would you want to use a softmax regression as opposed to K 1-vs.-all logistic regressions?

© When the classes are mutually exclusive

© When the classes are not mutually exclusive

© When the classes are not linearly separable

© Both work equally well
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Q4. [10 pts] PCA and least squares
Recall that PCA transforms (zero-mean) data into low-dimensional reconstructions that lie in the span of the top
k eigenvectors of the sample covariance matrix. Let Uk denote the d × k matrix of the top k eigenvectors of the
covariance matrix (Uk is a truncated version of U, which is the matrix of eigenvectors of the covariance matrix).

There are two approaches to computing the low-dimensional reconstruction w ∈ Rk of a data point x ∈ Rd:

1. Solve a least squares problem to minimize the reconstruction error
2. Project x onto the span of the columns of Uk

In this problem, you will show that these approaches are equivalent.

(a) [5 pts] Formulate the least squares problem in terms of Uk,x, and the variable w.

(Hint: This optimization problem should resemble linear regression.)

(b) [5 pts] Show that the solution of the least squares problem is equal to U>k x, which is the projection of x onto
the span of the columns of Uk.
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Q5. [10 pts] Mixture of linear regressions
In class, you learned thatK-means partitions points intoK clusters by minimizing an objective that encourages points
to be close to their cluster centers. K-means minimizes this objective in a coordinate descent fashion, alternating
between computing cluster assignments and cluster centers until convergence.

In this problem, you will devise an algorithm, in the spirit of K-means, that fits an entirely different kind of mixture
model. You are given a dataset {xi, yi}Ni=1, where xi ∈ Rd and yi ∈ R. You know that this dataset is a mixture of
realizations of K different linear regression models

y = w>k x +N (0, σ2)

parameterized by K weight vectors w1, . . . ,wK ∈ Rd.

Your algorithm will jointly determine the following:

• A partition S1, . . . , SK of the dataset such that (xi, yi) ∈ Sk iff (xi, yi) comes from model k
• The model weights w1, . . . ,wK

(a) [4 pts] Write an objective function f(S1, . . . , SK ,w1, . . . ,wK) to be minimized to solve this problem. Use the
penalty ‖w>k x− y‖2 if the point (x, y) is assigned to model k. Your objective should be a sum of N terms, and
each data point should show up in exactly one of these terms.

(b) [3 pts] What is coordinate descent update for f with w1, . . . ,wK fixed? In other words, to which of the K
models should a point (x, y) be assigned?

(c) [3 pts] Write the coordinate descent update for f with S1, . . . , SK fixed.

For a set S of (x, y) values, you should use the notation XS to denote the design matrix whose rows are the
x-values of the elements of S, and yS to denote the column vector of y-values of the elements of S.
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Q6. [10 pts] Training set augmentation
In class, you learned that one way to encourage invariance of a model to certain transformations is to augment the
training set with extra examples perturbed according to those transformations. In this problem, you will examine
the behavior of a certain type of input perturbation for a probabilistic linear regression setting.

Consider the following general generative model for regression:

• x ∼ p(x), where p(x) is a distribution over input vectors x ∈ Rd

• y|x ∼ p(y|x), where p(y|x) is a distribution over output scalars y ∈ R given x

Assume that the relationship between y and x is well-modeled by a linear function y = w>x, where w ∈ Rd, so that
in the infinite dataset limit, the objective to be minimized for this regression problem is:

L0(w) = E
[
(w>x− y)2

]
Now suppose the inputs are perturbed by zero-mean Gaussian noise ε ∼ N (0, λI), which is independent of the
training data. The new objective is

L(w) = E
[
(w>(x + ε)− y)2

]
(a) [9 pts] Compute and simplify L(w). Show all your work in detail, and write your answer in terms of L0.

(b) [1 pt] Is there a relationship between this particular type of input perturbation and some type of regularization?
If so, what kind of regularizer is involved?
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Q7. [12 pts] Kernel PCA
You are given d-dimensional real-valued data {xi}Ni=1 and a feature mapping φ : Rd → Rm. In the following questions,
you will investigate how to do PCA in feature space on the feature vectors {φ(xi)}Ni=1. Assume that the data is

centered in feature space; that is,
∑N

i=1 φ(xi) = 0.

In the following, Φ is a design matrix whose ith row is φ(xi).

(a) [1 pt] Recall that as a part of PCA, we must solve the eigenvalue problem Sv = λv, where S proportional to

the sample covariance matrix. For PCA in feature space, we have S =
∑N

i=1 φ(xi)φ(xi)
> = Φ>Φ. Why is this

a problem if m is large?

(b) [3 pts] Now, you are given a kernel function k(x,x′) = φ(x) · φ(x′). Define the kernel matrix Kij = k(xi,xj).

Show that if λ 6= 0, then λ is an eigenvalue of S if and only if λ is also an eigenvalue of K (in other words,
finding feature-space principal components can be done by finding eigenvectors of K).
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(c) [4 pts] Let v be an eigenvector of S with nonzero eigenvalue λ. Show that v can be written as v = Φ>αv,
where αv is an eigenvector of K with eigenvalue λ.

(d) [4 pts] You are given a new data point x ∈ Rd. Find the scalar projection of its feature representation φ(x)
onto v/‖v‖ (with v defined as above).

Write your answer in terms of αv and λ. Use the kernel k, and do not explicitly use φ. You should use the

notation kx =
[
k(x1,x) · · · k(xn,x)

]>
.
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Q8. [14 pts] Autoencoder
An autoencoder is a neural network designed to learn feature representations in an unsupervised manner. Unlike a
standard multi-layer network, an autoencoder has the same number of nodes in its output layer as its input layer.
An autoencoder is not trained to predict some target value y given input x; rather, it is trained to reconstruct its
own input x, i.e. to minimize the reconstruction error. An autoencoder is shown below.

Input #1

Input #2

Input #3

Input #4

Output #1

Output #2

Output #3

Output #4

Hidden
layer
(L2)

Input
layer
(L1)

Output
layer
(L3)

Suppose the input is a set of P -dimensional unlabeled data {x(i)}Ni=1. Consider an autoencoder with H hidden units
in L2. We will use the following notation for this autoencoder:

• We denotes the P ×H weight matrix between L1 and L2

• Wd denotes the H × P weight matrix between L2 and L3

• σ denotes the activation function for L2 and L3

• s
(i)
j =

∑P
k=1W

e
kjx

(i)
k

• z
(i)
j = σ

(∑P
k=1W

e
kjx

(i)
k

)
• t

(i)
j =

∑H
k=1W

d
kjz

(i)
k

• x̂
(i)
j = σ

(∑H
k=1W

d
kjz

(i)
k

)
• J(We,Wd)(i) = ‖x(i) − x̂(i)‖22 =

∑P
j=1(x

(i)
j − x̂

(i)
j )2 is the reconstruction error for example x(i)

• J(We,Wd) =
∑N

i=1 J(We,Wd)(i) is the total reconstruction error

(We add element 1 to the input layer and hidden layer so that no bias term has to be considered.)
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(a) [8 pts] Fill in the following derivative equations for We and Wd. Use the notation defined above; there should
be no new notation needed.

∂J (i)

∂W d
kl

=

P∑
j=1

 ·
∂x̂

(i)
j

∂W d
kl


∂x̂

(i)
j

∂W d
kl

= σ′

(
P∑

k=1

W e
kjx

(i)
k

)
·

∂J (i)

∂W e
kl

=
∂J (i)

∂s
(i)
j

·

∂J (i)

∂s
(i)
j

=

H∑
k=1

∂J (i)

∂t
(i)
k

· · σ′(s(i)j )



(b) [4 pts] To limit the number of activated hidden units, we add a sparsity penalty to the problem. The recon-
struction error is formulated as

Jsparse(W
e,Wd) = J(We,Wd) + β

H∑
j=1

KL(ρ‖ρ̂j)

where ρ̂j = 1
N

∑N
i=1 z

(i)
j , and ρ and β are hyperparameters. KL divergence is defined as

KL(ρ‖ρ̂j) = ρ log

(
ρ

ρ̂j

)
+ (1− ρ) log

(
1− ρ
1− ρ̂j

)

Write the following derivative updates for We and Wd.

∂Jsparse
∂W d

kl

=
∂J

∂W d
kl

+

∂Jsparse
∂W e

kl

=
∂J

∂W e
kl

+ β ·
H∑
j=1

(c) [2 pts] State some relations between autoencoders and PCA.
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