UC Berkeley — Computer Science
CS61BL: Data Structures

Midterm 2, Summer 2016
This test has 9 questions worth a total of 45 points. The exam is closed book, except that you are allowed to use
two double-sided pages of notes as a cheat sheet. No calculators or other electronic devices are permitted. Give

your answers and show your work in the space provided.

Write the statement out below in the blank provided and sign. You may do this before the exam begins. Any
plagiarism, no matter how minor, will result in points deducted from your exam.

“I have neither given nor received any assistance during the taking of this exam.”

Signature:

Write your name and student ID on the front page. Write the names of your neighbors. Write and sign the
given statement. Once the exam has started, write your login in the corner of every page.

Name: Your Login: cs61bl-
SID: Name of person to left:

TA: Name of person to right:

Notes:

e There may be partial credit for incomplete answers. Write as much of the solution as you can, but bear in
mind that we may deduct points if your answers are much more complicated than necessary.

e There are a lot of problems on this exam. Work through the ones with which you are comfortable first. Do
not get overly captivated by interesting design issues or complex corner cases you’re not sure about.

Not all information provided in a problem may be useful.
Unless otherwise stated, you can use any standard library classes & methods, and can assume imports
happen automatically.

e Unless otherwise stated, all given code on this exam should compile. All code has been compiled and
executed before printing, but in the unlikely event that we do happen to catch any bugs during the exam,
we’ll announce a fix. Unless we specifically give you the option, the correct answer is not ‘does not
compile.’

Optional. Mark along the line to show your feelings Before exam: [@ I]
on the spectrum between @ and ©. After exam: [@ I

UC BERKELEY, CS61BL Midterm 2, Summer 2016
Login:

1. Pidgey (6 pts)

a. For the below problems, assume N is the number of items or nodes in the data structure. Do not provide an
explanation. Provide an exact answer.

® The number of edges in a rooted tree is
® The height of a leaf node in a rooted tree is

® Given a rooted tree, defining a leaf to be the new root leaves a tree of size
Provide answers in Big-Theta notation if possible, otherwise use Big-O. Give the tightest possible bound.

® The height of a binary search tree is in

® The best-case runtime of insertion into a BST is in

® The best-case runtime of insertion into a red-black tree is in

® The length of a path between two nodes in a red-black tree is in

® The worst-case runtime of inserting an Integer into a HashSet is in

® The worst-case runtime of HashSet contains() ona String of length M is in

® The runtime of adding M Integers into the back of an empty ArrayList is in

® The worst-case runtime of contains() on a HashSet<Integer> is in

b. Draw the result of the standard insert and remove operations, one after another, on this BST.

Original insert(4) remove(7)
3
T T
2 7
e T
1 5 9
N /
6 8

UC BERKELEY, CS61BL Midterm 2, Summer 2016
Login:

2. Golduck (3 pts)

A normal generic linked list contains objects of only one type. But we can imagine a generic linked list where
entries alternate between two types. AltList is an implementation of such a data structure:

public class AltList<X, Y> {
private X item;
private AltList<Y, X> next;

AltList(X item, AltList<Y, X> next) {
this.item = item;
this.next = next;

}

Let's construct an AltList instance:

AltList<Integer, String> list =
new AltList<Integer, String>(5,
new AltList<String, Integer>("cat",
new AltList<Integer, String>(190,
new AltList<String, Integer>("dog", null))));

This list represents [5 cat 10 dog]. In this list, assuming indexing begins at 0, all even-index items are
Integers and all odd-index items are Strings.

Write an instance method called pairsSwapped() for the AltList class that returns a copy of the original list,
but with adjacent pairs swapped. Each item should only be swapped once. This method should be non-destructive:
it should not modify the original A1tList instance.

For example, calling 1list.pairsSwapped() should yield the list [cat 5 dog 10]. There were two swaps:
"cat" and 5 were swapped, then "dog" and 10 were swapped. You may assume that the list on which
pairsSwapped() is called has an even non-zero length. Your code should maintain this invariant.

public class AltList<X, Y> {
// ... continued from above

public pairsSwapped() {

UC BERKELEY, CS61BL Midterm 2, Summer 2016
Login:

3. Zubat (4 pts)

Consider the following classes and their hashcodes and equality definitions. There is a problem with each
hashCode () method below (correctness, distribution, efficiency). Provide a one-sentence explanation. Do not
list more than one problem. Assume there are no problems with the correctness of equals; any code for handling
casting is omitted for space

Code Problem(s), if any

class DynamicString { No problems
ArrayList<Character> vals;

(This one is done for you as an example using

public int hashCode() { Java’s String: :hashCode.)

int h = 9;

for (int 1 = @; i < vals.size(); i++) {
h =31 * h + vals.get(i);

}

return h;

}

public boolean equals(Object o) {
DynamicString d = (DynamicString) o;
return vals.equals(d.vals);

}

class PokeTime {
int startTime;
int duration;

public int getCurrentTime() {
// Gets the current system clock time

}

public int hashCode() {
return 1021 * (startTime + 1021
* duration + getCurrentTime());

}

public boolean equals(Object o) {
PokeTime p = (PokeTime) o;
return p.startTime == startTime
&& p.duration == duration;

UC BERKELEY, CS61BL Midterm 2, Summer 2016
Login:

class Phonebook {
List<Human> humans;

public int hashCode() {
int h = 9;
for (Human human : humans) {
// Assume Human hashcode is correct
h = (h + human.hashCode()) % 509;
}

return h;

}

public boolean equals(Object o) {
Phonebook p = (Phonebook) o;
return p.humans.equals(humans);

}

class Person {
Long id;
String name;
Integer age;

public int hashCode() {
return id.hashCode() + name.hashCode()
+ age.hashCode();

}

public boolean equals(Object o) {
Person p = (Person) o;
return p.id == id;

}

class DblCharSeq {
char[] seql;
char[] seq2;

public int hashCode() {
int h = 0;
for (char cl1 : seql) {
for (char c2 : seq2) {
h=31%* (31 *h+ cl) + c2;
}
}

return h;

}

public boolean equals(Object o) {
DblCharSeq d = (DblCharSeq) o;
return Arrays.equals(seql, d.seql)
&& Arrays.equals(seq2, d.seq2);

UC BERKELEY, CS61BL Midterm 2, Summer 2016
Login:

4. Vaporeon (6 pts)

Suppose we have a HashMap, but want to be able to undo operations made on it. Implement HistoryMap below
to have this functionality. The only operations that we care about that modify the structure are put and remove.

Calling undo should revert the state of the HistoryMap to before the last put or remove, whichever was most
recent. See the main method for example behavior. Assume remove is used correctly; any key removed is

assumed to already exist in the HistoryMap. You may not need all lines.

public class HistoryMap<K, V> extends HashMap<K, V> {

class { /* Helper class */
/* Place fields/variables here */

/* Place the constructor here */

() A

@Override
/** Remember that in a HashMap, a null value is valid */
public V put(K key, V value) {

}

@0verride
public V remove(Object key) {

}

// Continues on next page

UC BERKELEY, CS61BL Midterm 2, Summer 2016
Login:
@Override
public boolean containsKey(K key) {

return super.containsKey(key);

}

public void undo() {

if () {
return;

}

if () {

} else {

}

public static void main(String[] args) {
HistoryMap<String, Integer> h = new HistoryMap<>();

h.put("party"”, 1);
h.put("parrot", 2);
h.put("conga", 4);
h.put("parrot”, 3);
h.undo();
h.undo();

System.out.println(h); // Output: {parrot=2, party=1}
h.remove("party");

h.undo();

System.out.println(h); // Output: {parrot=2, party=1}

5. Wigglytuff (4 pts)

UC BERKELEY, CS61BL Midterm 2, Summer 2016

a. Consider the following Left-Leaning Red-Black tree, where red
nodes are marked with an asterisk (*). Draw the resulting tree after
inserting 28, 5, and 8 in order. Clearly mark red nodes with the letter R.

Login:

b. Now consider these BST operations. Red-Black trees are also valid BSTs, but sometimes require modified
operations. Check the boxes where the BST operations correctly function on the given data structure without

breaking invariants without any modifications.

BST Operation

Red-Black Tree

Left-Leaning
Red-Black Tree

void delete(T 0);

boolean contains(T o0);

void insert(T 0);

T getElementAt(int i);

List getElementsBetween(T s, T t);

List getAllElements();

UC BERKELEY, CS61BL Midterm 2, Summer 2016
Login:

6. Porygon (8 pts)

Finally! You've garnered a coveted interview with Litman Chen for an internship at Kelp. Determine which data
structure(s) are best suited for the scenarios below in terms of performance, taking into account the specific types
of inputs listed in each problem. Your descriptions of the data structure(s) chosen should be brief but sufficiently
detailed so that the runtime is unambiguous. Give the worst-case runtime bound of the solution in Big-Theta
notation.

a. Mr. Chen has loaded all the reviews stored on Kelp into a text document of N words. Find the number of
occurrences of each unique word.

Data Structures:

Usage:

Runtime:

b. Kelp has a collection of N reviews. Each review has a date, author name, number of stars and the text contents
of the review. Mr. Chen wants to query the number of reviews within a certain date-time range. Optimize for both
query and construction time.

Data Structures:

Usage:

Runtime (construction): Runtime (query):

c. Kelp is releasing a new product Kelp-Komplete, a text based auto-complete engine! It stores a collection of N
words. Given a query string of K characters, determine if it is a prefix of any of the words and thus can be
kelp-kompleted. Assume that the each of the N words have a maximum length of M. Additionally, give the
runtime for both construction and query.

Data Structures:

Usage:

Runtime (construction): Runtime (query):

d. Kelp is now trying to get into the field of visual computing. Mr. Chen gives you N images of size 256x256,
each represented as an int[][] array, that you’ll need to store in a collection. Each image has associated with it a
saturation value, which can be calculated from the pixels. Support the following operations: add (int[][]
img), getAllImgWithSaturation(int saturation), and remove(int[][] img).

Data Structures:

Usage:

Runtime (construction):

UC BERKELEY, CS61BL Midterm 2, Summer 2016
Login:

7. Lapras (6 pts)

Fill in a method, Tree: :flipHorizontally, which should flip a symmetric binary tree’s values destructively
about the root in linear time. Some helper methods (swapNumbers and safePush) are given. You may not
define your own helper methods. See the example:

7 7
5 6 6 5
e T L =
9 2 4 9 9 4 2 9
— — — I
3 8 8 3

public class Tree {
private TreeNode root;

private static class TreeNode {
private int num;
private TreeNode left, right;

private TreeNode(int num, TreeNode left, TreeNode right) {
this.num = num;
this.left = left;
this.right = right;

}

private static void swapNumbers(TreeNode t1, TreeNode t2) {
int temp = tl.num;
tl.num = t2.num;
t2.num = temp;

}

private static void safePush(TreeNode t, Stack<TreeNode> s) {
if (t !'= null) {
s.push(t);
}

// Continues on next page

10

UC BERKELEY, CS61BL Midterm 2, Summer 2016
Login:

public void flipHorizontally() {

while () |

}
Alakazam (0 pts)

This is a designated ExamFunZone™®©. Draw or write whatever you want.

11

UC BERKELEY, CS61BL Midterm 2, Summer 2016
Login:

8. Magikarp (3 pts)

Fill out DuplicateIterator so that it works as used in the example main method. (The main method is at the
bottom of the next page.) When given two sorted input Iterators, the DuplicateIterator returns the
elements that are within both iterators. Note the helper method findNextElement. You may not need all lines.

public class DuplicateIterator<T extends Comparable<? super T>> implements Iterator<T> {
private Iterator<T> iterl, iter2;
private T nextElement = null;

public DuplicateIterator(Iterator<T> iterl, Iterator<T> iter2) {

public boolean hasNext() {

public T next() {

/** Sets the nextElement instance variable to the next duplicate element
* (or null if there is no remaining duplicate element). */
private void findNextElement() { ... }

public static void main(String[] args) {
Iterator<Integer> iterl = Arrays.asList(1, 2, 4, 5, 6, 9).iterator();
Iterator<Integer> iter2 = Arrays.aslList(1, 2, 3, 5, 7, 10).iterator();
DuplicateIterator<Integer> di = new DuplicateIterator<>(iterl, iter2);
di.forEachRemaining(o -> System.out.print(o.toString() + " ")); // Prints 1 2 5

12

UC BERKELEY, CS61BL Midterm 2, Summer 2016
Login:

9. Dragonite (5 pts)

a. Write a method, makeArrayReducer, that takes in a non-empty array E[] arr and returns a Function. The
returned Function f should take in a BinaryOperator<E> and have a return type of E. ¥ should compute the
result of the reduce operation on arr, given the BinaryOperator. You may not need all lines. You do not have
to use any stream related methods, but if you do, there is no partial credit for incorrect syntax.

Recall that a BinaryOperator<E> takes in two arguments of type E and outputs an argument of type E. A
Function<T, R> takes in an argument of type T and returns an argument of type R. Both are functional
interfaces that have a single apply method, and instance references can be replaced with lambda statements and
method references.

public static <E> Function<BinaryOperator<E>, E> makeArrayReducer(E[] arr) {
assert arr.length != 0;

return

}

b. Now given an example array below, fill in the blanks to compute the array max and array sum.

final Double[] arr = {1.0, 0.99, 0.98, 0.97, 0.96, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1};
Function<BinaryOperator<Double>, Double> reducer = makeArrayReducer(arr);

double arr_max

double arr_sum

c. Using makeArrayReducer, write a one line method, join, that concatenates all the Strings in a string array
together using the delimiter to separate the entries in the array.

public static String join(String[] arr, String delimiter) {

return

}

Example usage:

final String[] strs = {"Na", "na", "nah", "Nah", "BATMAN!"};
String batmobile = join(strs, "NA");
System.out.println(batmobile);

// Output: NaNAnaNAnahNANahNABATMAN!

13

