
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2015 Instructors: Vladimir Stojanovic, John Wawrzynek 2015-12-18

L J

After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...	

Last Name

First Name

Student ID Number
CS61C Login cs61c-

The name of your SECTION TA (please circle)

Alex | Austin | Chris | David | Derek | Eric | Fred |
Jason | Manu | Rebecca | Shreyas | Stephan |

William | Xinghua

Name of the person to your LEFT

Name of the person to your RIGHT

All the work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in CS61C

who have not taken it yet. (please sign)

Instructions (Read Me!)
This booklet contains XX numbered pages including the cover page. After you finish the exam, turn in only this
booklet, and not the green sheet or datapath diagram.

• Please turn off all cell phones, smartwatches, and other mobile devices. Remove all hats & headphones.
Place your backpacks, laptops and jackets under your seat.

• You have 180 minutes to complete this exam. The exam is closed book; no computers, phones, or
calculators are allowed. You may use three handwritten 8.5”x11” pages (front and back) of notes in addition
to the provided green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you can. We will deduct
points if your solution is far more complicated than necessary. Make sure your solution is on the answer
sheet for credit.

 MT1-1 MT1-2 MT1-3 MT1-4 MT2-1 MT2-2 MT2-3 MT2-4 MT2-5
Points
Possible

8 8 12 8 9 11 9 12 5

 F-1 F-2 F-3 F-4 Total
Points
Possible

9 8 8 11 118

SID: _________________

2/18

Clarifications during the exam:

MT1 - depth question:

1. struct node * edges[] should be
struct node ** edges

2. line in the prologue should read
 sw $ra 0($sp)

3. line after the epilogue should read
lw $ra 0($sp)

MT1-4: The label on Line 17 should be L2
MT2-Floating Point: real: bits 8-15. imaginary: bits 0-7
MT2-Clobbering Time:
b. The cache is direct-mapped
c. Memory accesses = accesses in the for loop at part I
F-1: c. What is the maximum number of virtual pages a process can use?

SID: _________________

3/18

MT1-1: Potpourri – Good for the beginning… (8 points)

a. True/False:

i. The compiler turns C code into instructions ready to be run by a processor True False
ii. The instruction addiu $t0 $t1 100000 is a TAL instruction True False
iii. The linker computes the offset of all branch instructions True False

b. Memory Management

int global = 0;

int* func() {
 int* arr = malloc(10 * sizeof(int));
 return arr;
}

int main() {
 char* str = "hello world";
 char str2[100] = "cs61c";
 int* a = func();
 return 0;
}

In what part of memory are each of the following values stored?
*str: __________ str2[0]: __________
a: __________ arr: __________
arr[0]: __________

MT1-2: C-ing images through a kaleidoscope (8 points)

Consider a grayscale image with a representation similar to the one you worked with in Project 4,
where the image is represented by a 1-dimensional array of chars with length n x n. Fill out the
following function block_tile. It returns a new, larger image array, which is the same image tiled
rep times in both the x and y direction. You may or may not need all of the lines.

For a better idea of what must be accomplished, consider the following example:

char *image = malloc(sizeof(char) * 4);
image[0] = 1;
image[1] = 2;
image[2] = 3;
image[3] = 4;
char *tiled_image = block_tile(image, 2, 2);

The contents of tiled_image would then look like:

tiled_image: [1, 2, 1, 2
 3, 4, 3, 4
 1, 2, 1, 2
 3, 4, 3, 4];

SID: _________________

4/18

char *block_tile(char *block, int n, int rep) {
 int new_width = __;
 char *new_block = malloc(__);
 for (int j = 0; j < new_width; j++) {
 for (int i = 0; i < new_width; i++) {
 int old_x = __;
 int old_y = __;
 int new_loc = __;
 new_block[new_loc] = block[old_y * n + old_x];
 }
 }
 __;
 __;
 return new_block;
}

MT1-3: Easy questions have no depth – this one does (12 points)

We’re interested in running a depth-first search on a graph, and labeling the nodes in the order we
finish examining them. Below we have the struct definition of a node in the graph, and the
implementation of the function in C.

struct node {
 int data;
 int label;
 int num_edges;
 struct node* edges[];
}

Note that initially, all nodes in the graph have their
label set to -1. The address width of our machine
is 32 bits.

int dfs_label(struct node* node, int counter) {
 if (node->label != -1) {
 return counter;
 }
 for (int i = 0; i < node->num_edges; ++i) {
 counter = dfs_label(node->edges[i], counter);
 }
 node->label = counter++;
 return counter;
}

SID: _________________

5/18

Implement dfs_label in TAL MIPS. Assume node is in $a0 and counter is in $a1. You may not
need all the lines provided.

dfs_label:
prologue
 addiu $sp $sp ____
 sw $ra ($sp)
 sw $s0 4($sp)
 sw $s1 8($sp)
base case
 addiu $t1 ____ ____

 bne $t0 $t1 epilogue
loop
 addu $s0 ____ ____
 addiu $s1 $0 0
loop:
 lw $t0 ____
 beq ____ ____ ____
 lw $a0 ____ # load edges into $a0
 sll $t0 $s1 ____
 ____________________ # load the next node
 lw $a0 ____ # into $a0
 jal dfs_label

addu $a1 ____ ____
 addiu $s1 $s1 1
 j loop
fin:
 sw $a1 ____

 addu $v0 $0 $a1
epilogue:
 lw $ra ($sp)
 lw $s0 4($sp)
 lw $s1 8($sp)
 addiu $sp $sp ____
 jr $ra

SID: _________________

6/18

MT1-4: Can’t reveal this MIPS-tery (8 points)

 0| Mystery:
 1| add $t0, $a0, $0
 2| add $t1, $a1, $0
 3|
 4| la $s0, L1
 5| lw $s1, 12($s0)
 6| addi $s2, $0, 6
 7| addi $s3, $0, 0
 8| addi $s4, $0, 1057 #$s4 contains 0b0100 0010 0001
 9| sll $s4, $s4, 11
10|
11| L1: beq $s3, $s2, L2
12| addu $s1, $s1, $s4
13| sw $s1, 12($s0)
14| addu $t1, $a3, $t0
15| addi $s3, $s3, 1
16| j L1
17| Done:

a. When the above code executes, which line is modified? How many times?

b. Assume we run this block of code with $a0 = 1 and $a1 = 1; what is the value in $t2 at the end

of the code execution? How about $t3?

c. In three sentences or less, how does this code affect the temporary registers?

SID: _________________

7/18

MT2-1: Synchronous Finite State Digital Machine Systems (9 points)

a. The circuit shown below can be simplified. Write a Boolean expression that represents the function

of the simplified circuit using the minimum number of AND, OR, and NOT gates.

b. Consider the finite state machine below which has 6 states, and a single input that can take on the

value of 0 or 1. The finite state machine should output 1 if and only if 6 + the sum of all the input
values is not divisible by 2 or 3. One transition has been provided; complete the remainder of the
diagram.

(Hint: If the sum of the inputs is a multiple of 6, then we have 6 + the sum of the inputs = 6n for
some n. As 6n is divisible by 2, 6n cannot be prime.)

SID: _________________

8/18

c. Consider the following circuit. Assume registers have a CLK to Q time of 60ps, a setup time of
40ps, and a hold time of 30ps. Assuming that all gates have the same propagation delay, what is
the maximum propagation delay each individual gate could have to achieve a clock rate of 1GHz.

MT2-2: Do stray off of the well-worn datapath (11 points)

Suppose we have a new instruction, bmeq. We branch if the value in memory at the address in $rs
equals the value in $rt. The instruction format is as follows:

bmeq ($rs) $rt offset

Use the datapath diagram provided as a reference for input and output names. Assume we are
working with a non-pipelined single cycle datapath.

a. Write the register transfer language that represents the logic of this command.

b. You are given a new control signal, BMEQ, which is 1 when it is a BMEQ instruction and 0 when it

is not. In the following table, please fill in the inputs, control signal, and output destination for any
additional MUXes you would need in order for this instruction to work correctly. You might not need
all the lines.

Inputs: ReadData1, ReadData2, ReadData, AluOut, MemoryData, PC
Output destinations: Addr, ReadReg1, ReadReg2, WriteAddr, InputA, InputB, ReadAddr, WriteData

Control Signal Input0 Input1 Output Destination

SID: _________________

9/18

d. Fill in the values for the control signals for this new instruction. Use X if the signal does not matter.
For ExtOp, write SIGN for sign-extension and ZERO for zero-extension.

Reg
Dst

ExtOp RegWr ALU
Src

ALU
Ctr

Mem
Wr

Memto
Reg

Branch Jump BMEQ

 1

e. In ≤ 1 sentence, why can’t this instruction work with a normal pipelined 5-stage MIPS datapath?

MT2-3: Enough stalling, that will only slow you down (9 points)

Consider the standard 5-stage pipelined MIPS CPU with instruction fetch, register read, ALU,
memory, and register write stages. Register writes happen before register reads in the same clock
cycle, branch comparison is done during the register read stage, there is a branch delay slot, and
forwarding is implemented.

For the following stream of instructions, assume that $t0 is not equal to 0, so the branch is not taken.

0| start: lw $t0 0($a0)
1| beq $t0, 0, end
2| addiu $t0, $t0, 10
3| sw $t0 0($a0)
4| end:

a. For each pair of instructions, circle whether the CPU needs to be stalled for the execution of the

second instruction, and if so, for how many cycles.

i. 0| start: lw $t0 0($a0) stall for ___ cycles
 1| beq $t0, 0, end no stall

ii. 1| beq $t0, 0, end stall for ___ cycles

2| addiu $t0, $t0, 10 no stall

iii. 2| addiu $t0, $t0, 10 stall for ___ cycles

3| sw $t0 0($a0) no stall

SID: _________________

10/18

Logic in each stage of the pipeline has the following timing:
Instruction Fetch Register Read ALU Memory Register Write

150 ps 100 ps 100 ps 200 ps 100 ps

The pipelining registers in between stages have the following timing:

Clock-to-Q Hold time Setup

30 ps 20 ps 30 ps

b. What is the minimum clock period, in picoseconds, for which the processor can run?

c. What is the time required, in picoseconds, that it takes for the CPU, starting from the first stage of

the lw instruction, to finish the execution of the final sw instruction? You may use the variable
stall_cycles in place of the sum of your answers for question a, and clock_period in place of
your answer for question b.

d. Which timing values, if lowered independently (all other timing remain the same), will allow us to

increase the frequency of the CPU? Circle all that apply.

Pipelining Register Clock-to-Q Pipelining Register Hold time
Pipelining Register Setup time Instruction Fetch
Register Read ALU
Memory Register Write

MT2-4: If you do well, it’s clobbering time! (12 points)

The information for one student in regards to clobbering a single midterm is captured in the data of
the following tightly-packed struct:

typedef struct student {
 int studentID;
 float oldZScore;
 float newZScore;
 int clobber; /* a value equal to 1 if a student clobbers,
 0 if otherwise */
} student;

SID: _________________

11/18

We run the following code on a 32-bit machine with a 4 KiB write-back cache. importStudent()
returns a struct student that is in the course roster and that has not been returned by
importStudent() previously. For simplicity, assume importStudent() does not affect the cache.

int ARR_SIZE = 512; //Class size rounded down for simplicity
student *61CStudents = (student *) malloc (sizeof(student) * ARR_SIZE);

/* Assume malloc returns a cache block aligned address */
for (int i = 0; i < ARR_SIZE; i++) { <=== part I

61CStudents[i] = importStudent()
}

for (int i = 0; i < ARR_SIZE; i++) { <=== part II
 if (61CStudents[i].oldZscore > 61CStudents[i].newZscore){
 61CStudents[i].clobber = 0;
 } else {
 61CStudents[i].clobber = 1;

}
}

a. How many bytes is needed to store the information for a single student?

b. Assume that the block size is 32 B. What is the tag:index:offset breakdown of the cache?
Tag: ____ Index: ____ Offset: ____

c. At the label part I, assume that 61CStudents is filled with the correct data. What type of misses

will occur among all memory accesses during the process? Why?

d. Suppose we run the code again and the cache block size is now 8 B long and the cache is direct-

mapped. For the for-loop in part II, what is the miss rate in the best case scenario (we want the
highest hit rate possible)? What type of misses occur?

e. For the for-loop in part II, assume that the cache block size is now 128B.

i. If the cache is direct-mapped, what is the hit rate?

ii. If the cache is fully associative, what is the hit rate? Does associativity help? Why
or why not?

SID: _________________

12/18

MT2-5: What is the floating point of complex numbers? (5 points)

Your friend needs your help to make a new complex number representation. As a refresher, complex
numbers are in the form 𝑎 + 𝑏𝑖, where 𝑎 is the real component, 𝑏 is the imaginary component, and
the magnitude is 𝑎% + 𝑏%.

You decide to create a 16-bit representation for storing both the real and imaginary components as
floating point numbers with the following form: The first 8 bits will represent the real component, and
the latter 8 bits will represent the complex component. Your new representation looks like this:

Sign Exponent Significand Sign Exponent Significand
 15 14-12 11-8 7 6-4 3-0

Bits per field:

Sign: 1
Exponent: 3
Significand: 4
Everything else follows the IEEE standard 754 for floating point, except in 16 bits

Bias: 3

a. Convert 0xB248 into a complex number.

b. What is the smallest positive number you can represent with a nonzero real component and zero

complex component.

Recall the following floating point representation from the midterm:

Sign Exponent Significand
 15 14-9 8-0

Bits per field:

Sign: 1
Exponent: 6
Significand: 9
Everything else follows the IEEE standard 754 for floating point, except in 16 bits

c. Ignoring infinities, which of the two representations presented above can represent a number with

the larger magnitude.
Complex Number Representation Midterm Representation

SID: _________________

13/18

F-1: You may need to context switch for this question (9 points)

The system in question has 1MiB of physical memory, 32-bit virtual addresses, and 256 physical
pages. The memory management system uses a fully associative TLB with 128 entries and an LRU
replacement scheme.

a. What is the size of the physical pages in bytes?

b. What is the size of the virtual pages in bytes?

c. What is the maximum number of pages a process can use?

d. What is the minimum number of bits required for the page table base address register?

Everybody Got Choices
e. Answer “Yup!” (True) or “Nope!” (False) to the following questions

i. The page table is stored in main memory Yup! Nope!
ii. Every virtual page is mapped to a physical page Yup! Nope!
iii. The TLB is checked before the page table Yup! Nope!
iv. The penalty for a page fault is about the same as the penalty for a cache miss Yup! Nope!
v. A linear page table takes up more memory as the process uses more memory Yup! Nope!

SID: _________________

14/18

F-2: Not all optimizations are created equal (8 points)

For this question, you will be looking at several different versions of the same code that has been, or
at least has tried to be, optimized. For each of the versions, indicate the correctness and speed with
the appropriate letter:

Correctness:
A. Always Correct
B. Sometimes Correct
C. Always Incorrect

Speed:
A. Faster
B. Same
C. Slower

For reference, here is the serial version of the code:

#DEFINE RESULT_ARR_SIZE 8
#DEFINE ARR_SIZE 65536

result[0] = 0;
for (int i = 1; i < RESULT_ARR_SIZE; i++) {
 int sum = 0;
 for (int j = 0; j < ARR_SIZE; j++) {
 sum += arr[j] + i;
 }
 result[i] = sum + result[i - 1];
}

a. Version 1:

result[0] = 0;
#pragma omp parallel
for (int i = 1; i < RESULT_ARR_SIZE; i++) {
 int sum = 0;
 for (int j = 0; j < ARR_SIZE; j++) {
 sum += arr[j] + i;
 }
 result[i] = sum + result[i - 1];
}

Correctness: A B C
Speed: A B C

SID: _________________

15/18

b. Version 2:

result[0] = 0;
#pragma omp parallel for
for (int i = 1; i < RESULT_ARR_SIZE; i++) {
 int sum = 0;
 for (int j = 0; j < ARR_SIZE; j++) {
 sum += arr[j] + i;
 }
 #pragma omp critical
 result[i] = sum + result[i - 1];
}

Correctness: A B C
Speed: A B C

c. Version 3:

result[0] = 0;
for (int i = 1; i < RESULT_ARR_SIZE; i++) {
 int sum = 0;
 #pragma omp parallel for reduction(+: sum)
 for (int j = 0; j < ARR_SIZE; j++) {
 sum += arr[j] + i;
 }
 result[i] = sum + result[i - 1];
}

Correctness: A B C
Speed: A B C

d. Consider the correctly parallelized version of the serial code above.

i. Could it ever achieve perfect speedup?

ii. What law provides the answer to this question?

SID: _________________

16/18

F-3: Map and Reduce are 2nd degree friends - when you also Combine
(8 points)

Imagine we’re looking at Facebook’s friendship graph, which we model as having a vertex for each
user, and an undirected edge between friends. Facebook stores this graph as an adjacency list, with
each vertex associated with the list of its neighbors, who are its friends. This representation can be
viewed as a list of degree 1 friendships, since each user is associated with their direct friends. We’re
interested in finding the list of degree 2 friendships, that is, an association between each user and the
friends of their direct friends.

You are given a list of associations of the form (user_id, list(friend_id)), where the user_id
is 1st degree friends with all the users in the list.

Your output should be another list of associations of the same form, where the first item of the pair is
a user_id, and the second item is a list of that user’s 2nd degree friends. Note: a user is not their own
2nd degree friend, so the list of second degree friends must not include the user themselves.

Write pseudocode for the mapper and reducer to get the desired output from the input. Assume you
have a set data structure, with add(value) and remove(value) methods, where value can be an
item or a list of items. You can iterate through a list with the for item in items construct. You may
not need all the lines provided.

map(user_id, friend_ids):

for __________________________________:

emit(_________, _________)

reduce(key, values):

second_degree_friends = set()

emit(_______________, __________________)

SID: _________________

17/18

F-4: Potpourri – … and good for the end! (11 points)

a. We have a hard drive with a controller overhead of 5 ms. The disk has 12000 cylinders, and it

takes 2 ms to cross 1000 cylinders. The drive rotates at 24000 RPM, and we want to copy half a
MB of data. Our hard drive has a transfer rate of 500 MB/s. What is the access time of a read from
disk?

b. I launched a new online app at the start of this year (2015), and I want to have at least three nines

of availability per year. Up until today, my app has been available at all times this year. However,
some malicious hackers crashed my app for today; it took me 4 hours to get it back up again. For
the rest of this year, what is the most downtime I can have on my app to meet my availability goals,
rounded to the closest hour? (There are 8760 hours this year)

c. If a receiver checks the header and the checksum is correct, what does it do? (In ≤ 1 sentence)

d. For the standard single-error correcting Hamming code presented in class, is the 12-bit code word
0x61C corrupted? What is the correct data value in decimal format?

e. True/False

i. Raid 4 allows for independent writes to disk. True False
ii. Raid 5 allows for independent writes to disk. True False
iii. Raid 5 allows for independent reads to disk. True False
iv. IP guarantees delivery True False

SID: _________________

18/18

