Physics 137A, Spring 2004 , Section 1 (Hardtke), Midterm II
Solutions

Problem 1 Part A Let,
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The unitarity condition, UTU = 1, gives:
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These yield four equations that are conditions on the matrix elements:

The Hermitian conjugate is:

UfiUn + U3 U =1
U1*1U12 + U§1U22 = 0
UTQUll + U;2U21 = O
UlsUra + UspUse =1

Part B The equation Uj;U11 + Us;Uz1 = 1 is equivalent to R+ T = 1 for scattering from the left,
and the equation UjsUie + U3,Use = 1 is equivalent to R + T = 1 for scattering from the right.

Problem 2 We are given A|¢) = a|¢) and
[A,B] = B +2BA?
We can apply the commutation relation to the state |¢):
[A, Bl|o) = (B +2BA%)|¢)
Expanding the commutator, we have:
(AB — BA)|¢) = (B +2B4%)|¢)
We can move one term to the right side:

AB|¢) = (B + 2BA% + BA)|¢)
Using A|¢) = al|¢), we have, o R
A(Bl¢)) = (1+2a° + a)(B|9))
Thus B|¢) is and eigenvector of A with eigenvalue (1 + 2a% + a).



Problem 3
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Now we can use the Schr&inger equation,

ovr
e = AU,
"ot
and its complex conjugate (noting that H is a Hermitian operator),
ov*
ot

—h = HU*,

Thus
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We now have,
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In the second step, we have used the fact that H is Hermitian and can be moved to the second vector
in the inner product. Multiplying by % yields,

= ([A, H)) +m<%
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Problem 4 Part A The stationary states [t¢,,) are solutions to the Schrédinger equation,

H{y) = Eylihn),

with E,, = (n+ 3)hw. The probability of measuring a given eigenvalue E,, is,

lenl® = [{Wn ) 2.
For,
_ L

V5

we have ¢y = 2/ V5 and ¢35 = 1 / V5 and all other ¢, equal to zero. Thus we measure energy
Ey = (2+ 1)hw with probability |c2|> = £, and energy E3 = (3 + 1)hw with probability|cs|? = £

W (x)) 2l () + [¢3(2))];



Part B We know that,
a4 [Yn) = cnlthnir).
We thus have,

<CAL+’(/Jn|d+’l/}n> = |Cn‘2<wn+l|wn+l>

= |Cn‘2

In the last step, we use the fact that the |¢,) are orthonormal. We can also write the inner
product as [using the relation (a_)" = a,],

<d+wn|d+wn> = <wn‘d*d+wn>
We now note that the Hamiltonian can be written as,

A

1
H=a_a, — —hw,
2
and thus,
A 1
G_ay =H + Ehw.

Making this substitution, we have:

(@ nlistn) = (Wl + Sho)yn)

(nl((n+ ) + o))
(n+ 1o ().

We now have |¢,|?> = (n + 1)hw, or ¢, = /(n + 1)hw.

Part C Using the result from Part B, we have,

B) = ay|U(2)
- a+<%[2\w2<x>> T [s(@))
2 1

= A(E(V 3hw)|Ys(x)) + %(V 4hw)|pa(x)))

We introduce the complex number A in the last step since the vector is no longer normalized and
we need to determine A. We get A from,

1 = (2(2)|2(z))
2 1 2 1
= |A\2<%<v3hw><ws<x>| + (VAR (@) (2 (V3Iw)[Ys(@)) + 2 (VW) [ga(@))
4 1
= AP (3hw) + £ (4hw))
= |A\2@
5

This gives A = 4\\/[7%. Substituting into the equation for |®) we get,

9) = L2 pa(a) + 2a(a)

Using the procedure from Part A, we measure energy E = (3 + % )hw with probability |c3|* = 3/4
and measure energy E = (4 + 3)hw with probability |es|? = 1/4.



