Physics 137A, Spring 2004, Section 1 (Hardtke), Midterm II Solutions

Problem 1 Part A Let,

$$U = \left(\begin{array}{cc} U_{11} & U_{12} \\ U_{21} & U_{22} \end{array}\right)$$

The Hermitian conjugate is:

$$U^{\dagger} = \left(\begin{array}{cc} U_{11}^* & U_{21}^* \\ U_{12}^* & U_{22}^* \end{array} \right)$$

The unitarity condition, $U^{\dagger}U = 1$, gives:

$$\begin{pmatrix} U_{11}^* & U_{21}^* \\ U_{12}^* & U_{22}^* \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

These yield four equations that are conditions on the matrix elements:

$$U_{11}^* U_{11} + U_{21}^* U_{21} = 1$$

$$U_{11}^* U_{12} + U_{21}^* U_{22} = 0$$

$$U_{12}^* U_{11} + U_{22}^* U_{21} = 0$$

$$U_{12}^* U_{12} + U_{22}^* U_{22} = 1$$

Part B The equation $U_{11}^*U_{11} + U_{21}^*U_{21} = 1$ is equivalent to R + T = 1 for scattering from the left, and the equation $U_{12}^*U_{12} + U_{22}^*U_{22} = 1$ is equivalent to R + T = 1 for scattering from the right.

Problem 2 We are given $\hat{A}|\phi\rangle = a|\phi\rangle$ and

$$[\hat{A}, \hat{B}] = \hat{B} + 2\hat{B}\hat{A}^2$$

We can apply the commutation relation to the state $|\phi\rangle$:

$$[\hat{A}, \hat{B}]|\phi\rangle = (\hat{B} + 2\hat{B}\hat{A}^2)|\phi\rangle$$

Expanding the commutator, we have:

$$(\hat{A}\hat{B} - \hat{B}\hat{A})|\phi\rangle = (\hat{B} + 2\hat{B}\hat{A}^2)|\phi\rangle$$

We can move one term to the right side:

$$\hat{A}\hat{B}|\phi\rangle = (\hat{B} + 2\hat{B}\hat{A}^2 + \hat{B}\hat{A})|\phi\rangle$$

Using $\hat{A}|\phi\rangle = a|\phi\rangle$, we have,

$$\hat{A}(\hat{B}|\phi\rangle) = (1 + 2a^2 + a)(\hat{B}|\phi\rangle)$$

Thus $\hat{B}|\phi\rangle$ is and eigenvector of \hat{A} with eigenvalue $(1+2a^2+a)$.

Problem 3

$$\begin{split} \frac{d\langle \hat{A} \rangle}{dt} &= \frac{d}{dt} \langle \Psi | \hat{A} \Psi \rangle \\ &= \langle \frac{\partial \Psi}{\partial t} | \hat{A} \Psi \rangle + \langle \Psi | \frac{\partial \hat{A}}{\partial t} \Psi \rangle + \langle \Psi | \hat{A} \frac{\partial \Psi}{\partial t} \rangle \\ &= \langle \frac{\partial \Psi}{\partial t} | \hat{A} \Psi \rangle + \langle \Psi | \hat{A} \frac{\partial \Psi}{\partial t} \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle \end{split}$$

Now we can use the Schrödinger equation,

$$i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi,$$

and its complex conjugate (noting that \hat{H} is a Hermitian operator),

$$-\imath\hbar\frac{\partial\Psi^*}{\partial t} = \hat{H}\Psi^*,$$

Thus,

$$\frac{\partial \Psi}{\partial t} = \frac{1}{i\hbar} \hat{H} \Psi$$

We now have,

$$\begin{split} \frac{d\langle \hat{A} \rangle}{dt} &= \frac{-1}{\imath \hbar} \langle \hat{H} \Psi | \hat{A} \Psi \rangle + \frac{1}{\imath \hbar} \langle \Psi | \hat{A} \hat{H} \Psi \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle \\ &= \frac{-1}{\imath \hbar} \langle \Psi | \hat{H} \hat{A} \Psi \rangle + \frac{1}{\imath \hbar} \langle \Psi | \hat{A} \hat{H} \Psi \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle \\ &= \frac{1}{\imath \hbar} \langle \Psi | (\hat{A} \hat{H} - \hat{H} \hat{A}) \Psi \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle \\ &= \frac{1}{\imath \hbar} \langle [\hat{A}, \hat{H}] \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle \end{split}$$

In the second step, we have used the fact that \hat{H} is Hermitian and can be moved to the second vector in the inner product. Multiplying by $i\hbar$ yields,

$$i\hbar \frac{d\langle \hat{A} \rangle}{dt} = \langle [\hat{A}, \hat{H}] \rangle + i\hbar \langle \frac{\partial \hat{A}}{\partial t} \rangle$$

Problem 4 Part A The stationary states $|\psi_n\rangle$ are solutions to the Schrödinger equation,

$$\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle,$$

with $E_n = (n + \frac{1}{2})\hbar\omega$. The probability of measuring a given eigenvalue E_n is,

$$|c_n|^2 = |\langle \psi_n | \Psi \rangle|^2.$$

For,

$$|\Psi(x)\rangle = \frac{1}{\sqrt{5}}[2|\psi_2(x)\rangle + |\psi_3(x)\rangle],$$

we have $c_2=2/\sqrt{5}$ and $c_3=1/\sqrt{5}$ and all other c_n equal to zero. Thus we measure energy $E_2=(2+\frac{1}{2})\hbar\omega$ with probability $|c_2|^2=\frac{4}{5}$, and energy $E_3=(3+\frac{1}{2})\hbar\omega$ with probability $|c_3|^2=\frac{1}{5}$

Part B We know that,

$$\hat{a}_{+}|\psi_{n}\rangle = c_{n}|\psi_{n+1}\rangle.$$

We thus have,

$$\langle \hat{a}_+ \psi_n | \hat{a}_+ \psi_n \rangle = |c_n|^2 \langle \psi_{n+1} | \psi_{n+1} \rangle$$
$$= |c_n|^2$$

In the last step, we use the fact that the $|\psi_n\rangle$ are orthonormal. We can also write the inner product as [using the relation $(\hat{a}_-)^{\dagger} = \hat{a}_+$],

$$\langle \hat{a}_+ \psi_n | \hat{a}_+ \psi_n \rangle = \langle \psi_n | \hat{a}_- \hat{a}_+ \psi_n \rangle$$

We now note that the Hamiltonian can be written as

$$\hat{H} = \hat{a}_- \hat{a}_+ - \frac{1}{2}\hbar\omega,$$

and thus,

$$\hat{a}_{-}\hat{a}_{+} = \hat{H} + \frac{1}{2}\hbar\omega.$$

Making this substitution, we have:

$$\langle \hat{a}_{+}\psi_{n}|\hat{a}_{+}\psi_{n}\rangle = \langle \psi_{n}|(\hat{H} + \frac{1}{2}\hbar\omega)\psi_{n}\rangle$$

$$= \langle \psi_{n}|((n + \frac{1}{2})\hbar\omega + \frac{1}{2}\hbar\omega)\psi_{n}\rangle$$

$$= (n + 1)\hbar\omega\langle\psi_{n}|\psi_{n}\rangle.$$

We now have $|c_n|^2 = (n+1)\hbar\omega$, or $c_n = \sqrt{(n+1)\hbar\omega}$.

Part C Using the result from Part B, we have,

$$\begin{split} |\Phi\rangle &= \hat{a}_{+}|\Psi(x)\rangle \\ &= \hat{a}_{+}(\frac{1}{\sqrt{5}}[2|\psi_{2}(x)\rangle + |\psi_{3}(x)\rangle]) \\ &= A(\frac{2}{\sqrt{5}}(\sqrt{3\hbar\omega})|\psi_{3}(x)\rangle + \frac{1}{\sqrt{5}}(\sqrt{4\hbar\omega})|\psi_{4}(x)\rangle) \end{split}$$

We introduce the complex number A in the last step since the vector is no longer normalized and we need to determine A. We get A from,

$$1 = \langle \Phi(x) | \Phi(x) \rangle$$

$$= |A|^2 \left(\frac{2}{\sqrt{5}} (\sqrt{3\hbar\omega}) \langle \psi_3(x) | + \frac{1}{\sqrt{5}} (\sqrt{4\hbar\omega}) \langle \psi_4(x) | \right) \left(\frac{2}{\sqrt{5}} (\sqrt{3\hbar\omega}) | \psi_3(x) \rangle + \frac{1}{\sqrt{5}} (\sqrt{4\hbar\omega}) | \psi_4(x) \rangle \right)$$

$$= |A|^2 \left(\frac{4}{5} (3\hbar\omega) + \frac{1}{5} (4\hbar\omega) \right)$$

$$= |A|^2 \frac{16\hbar\omega}{5}$$

This gives $A = \frac{\sqrt{5}}{4\sqrt{\hbar\omega}}$. Substituting into the equation for $|\Phi\rangle$ we get,

$$|\Phi\rangle = \frac{\sqrt{3}}{2}|\psi_3(x)\rangle + \frac{1}{2}|\psi_4(x)\rangle$$

Using the procedure from Part A, we measure energy $E = (3 + \frac{1}{2})\hbar\omega$ with probability $|c_3|^2 = 3/4$ and measure energy $E = (4 + \frac{1}{2})\hbar\omega$ with probability $|c_4|^2 = 1/4$.