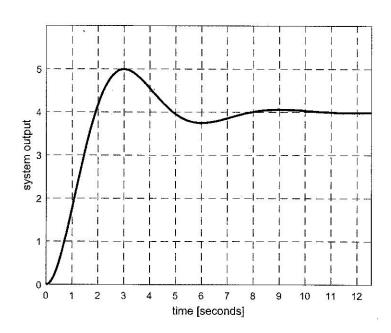
NAME:

SOLUTION

# 1	# 2	# 3	# 4	# 5	# 6	#7	TOTAL
		140		2	86	E E	1.
9	8	16	12	. 12	12	12	81

Problem # 1 (3+6 points)



The figure above shows the step response of a second order system with no zeros.

- (a) Find the system's percent overshoot, peak time, and DC gain.
- (b) Write a procedure for computing the system poles from this information.

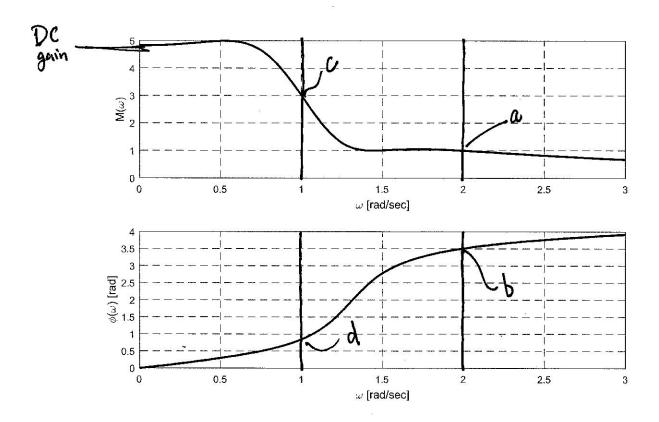
a)
$$\frac{1}{100} = \frac{5-4}{4} \cdot 100 = 25\%$$
 $T_p = 3$ seconds

 $DC gain = 4$

b) i) $3 = -\frac{\ln(0.25)}{\pi^2 + \ln^2 0.25}$

ii) $w_n = \frac{\pi}{T \ln n^2}$

iii)
$$\lambda_{1,2} = -\omega_n 3 + \omega_n \sqrt{3^2 - 1}$$



Answer the following questions for this frequency response plot. Notice that all scales are linear. You should define the symbols you need in the figure.

- (a) What is the DC gain? (give an approximate numerical answer)
- (b) What is the output for an input signal of $4\sin(2t)$?
- (c) What input signal produces an output of $12\sin(t)$?

a) DC gain
$$\stackrel{\sim}{=} 4.9$$
b) $y(t) = 4a \sin(2t-b)$ with $a \stackrel{\sim}{=} 1$, $b \stackrel{\sim}{=} 3.5 \text{ rad}$.

(4a sin $(2t+b)$ is also acceptable)

c) $y(t) = 12 \sin(4t+d)$ with $a \stackrel{\sim}{=} 3.5 \text{ rad}$.

(12
$$\sin(t-d)$$
 is also acceptable)

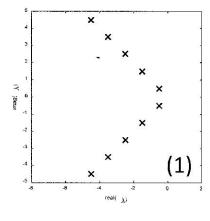
Problem # 3 (2+2+6+6 points)

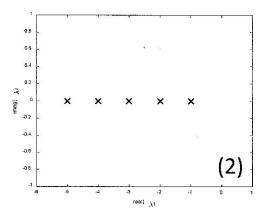
The next page shows a set of pole plots marked (1) through (4), and a set of step response plots marked (a) through (d). Each of the plots represents 5 different systems. So there is a total of $4 \times 5 = 20$ systems and 20 step responses. Your job is to match them up.

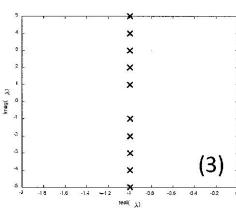
- (a) Which of the pole plots represent second order systems? Which represent first order systems?
- (b) Which of the <u>step response plots</u> represent second order systems? Which represent first order systems?
- (c) For each of the 2nd order pole plots, what quantity do all of the pole-pairs in the plot have in common. Express this as a function of ξ and ω_n .
- (d) Fill in the following table.

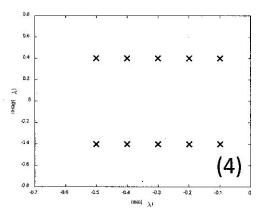
pole plot	corresponding step response plot (a-d)	common performance metrics ($\%OS$, T_s , T_p). (leave blank for 1st order systems)		
(1)	C	7/05		
(2)	d			
(3)	a	Ts		
(4)	Ь	Tp		

Pole plots:

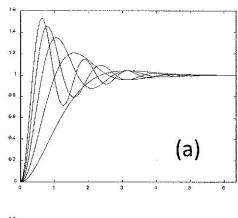


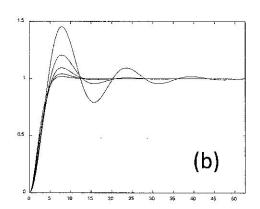


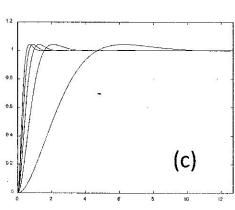


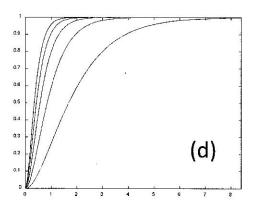


Step responses:

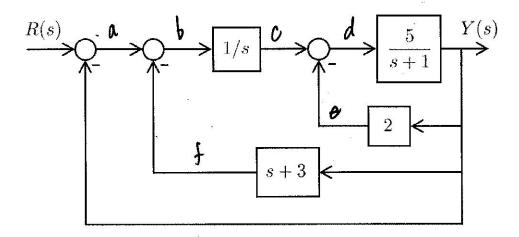








Problem # 4 (6+4+2 points)



For the block diagram shown above,

- (a) Find the transfer function from R to Y.
- (b) What type of second order system is this?
- (c) Find the DC gain.

a)
$$V(s) = \frac{5}{s+1} (c-e) = \frac{5}{s+1} (\frac{1}{s}b - 2Y)$$

$$= \frac{5}{s(s+1)} (a-f) - \frac{10}{s+1} Y$$

$$= \frac{5}{s(s+1)} (R-Y) - \frac{5}{s(s+1)} (s+3)Y - \frac{10}{s+1} Y$$

$$\therefore s(s+1)Y = 5R - 5Y - 5(s+3)Y - 10sY$$

$$\therefore (s^2 + s + 5s + 10s + 5 + 15)Y = 5R.$$

$$\therefore \frac{V}{R} = \frac{5}{s^2 + 16s + 20}$$

$$3 = \frac{8}{2\sqrt{57}} = \frac{4}{\sqrt{5}} > 1 \implies 2nd \text{ order overdamped}$$

c)
$$G(0) = \frac{5}{0^2 + 16(0) + 20} = \frac{1}{4}$$

Problem # 5 (6+3+3 points)

For the system,

$$\dot{y} = -y + 3u$$
 ... first order system with $a=-1$, $b=3$

- (a) Find an analytical expression for the response y(t) to an input $u(t) = e^{-t}$ with initial condition y(0) = 1.
- (b) Identify the transient response and the steady state response.
- (c) Identify the unforced response and the forced response.

a)
$$y(t) = e^{t}(1) + \int_{0}^{t} e^{-(t-t)} 3 u(t) dt$$

$$= e^{t} + 3 \int_{0}^{t} e^{-t+t} e^{-t} dt$$

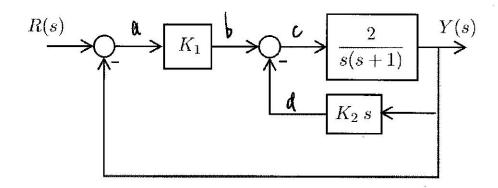
$$= e^{t} + 3 e^{t} \int_{0}^{t} 1 dt$$

$$= e^{t} + 3 t e^{-t} = e^{-t}(1+3t)$$
b) $y(t) = e^{t}(1+3t) + 0$

$$= e^{t}(1+3t) + 0$$

$$= e^{t}(1+3t) + 0$$
Steady state

Problem # 6 (4+4+4 points)



For the block diagram shown above,

- (a) Find the closed loop transfer function from R to Y.
- (b) For what ranges of K_1 and K_2 is the system stable?
- (c) Compute K_1 and K_2 that produce a closed loop response with $\omega_n = 2$ and $\xi = 1$.

a)
$$Y = \frac{2}{5(5+1)} C = \frac{2}{5(5+1)} (h-d) = \frac{2}{5(5+1)} (k_1 a + k_2 5 Y)$$

$$= \frac{2k_1}{5(5+1)} (R-Y) + \frac{2k_2 5}{5(5+1)} Y$$

$$\therefore 5(5+1) Y = 2k_1 R - 2k_1 Y + 2k_2 5 Y$$

$$\therefore (5^2 + 5 + 2k_2 5 + 2k_1) Y = 2k_1 R$$

$$\frac{1}{R} = \frac{2k_1}{s^2 + (1+2k_2)s + 2k_1}$$

$$\begin{cases} 1 + 2k_2 > 0 \\ 2k_1 > 0 \end{cases} \iff \begin{cases} k_2 > -\frac{1}{2} \end{cases}$$

c)
$$\{ \omega_n = \sqrt{2k_1} = 2 \}$$

 $\{ 23\omega_n = 1 + 2k_2 = 2(1)(2) = 4 \}$

$$\begin{cases} K_1 = 4/2 = 2 \\ K_2 = +\frac{3}{2} \end{cases}$$

Problem # 7 (3+6+3 points)

- 1. An n'th order transfer function has this many state-space realizations:
 - (a) 1
 - (b) 2
 - (c) n
 - (d) ∞
- 2. The first column of the following table provides differential equations for systems with input u and output y. Complete the table with checkmarks in the appropriate cells.

System	is strictly causal	is linear	is time- invariant
$\ddot{y} + 3\dot{y} - 4y = \ddot{u} + 8u$		$\sqrt{}$	/
$\ddot{y} + 3\dot{y} - 4ty = \dot{u} + 8u$			/
$\ddot{y} + 3\sqrt{\dot{y}} - 4y = \ddot{u} + 8u$			

3. Match the concepts on the left with their mathematical notation on the right (write the letter in the box).

E decibels

B convolution

A steady state gain

prequency response

F Laplace transform

A.
$$|G(0)|$$

B.
$$\int_{-\infty}^{\infty} g(t)h(t-\tau)d\tau$$

C. $\frac{dA}{da} \frac{a_0}{A_0}$

D.
$$M(\omega)U\sin(\omega t - \phi(\omega))$$

E. $20 \log_{10} X$

F.
$$\int_0^\infty e^{-st} f(t) dt$$