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full credit with no justification. Incorrect answers may receive partial credit.
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1. TRUE or FALSE?: total 24 points, each part 3 points
For each of the questions below, answer TRUE or FALSE.
Clearly indicate your correctly formatted answer: this is what is to be graded.No need to justify!

Answer: Note that the answers provide explanations for your understanding, even though no such justifica-
tion was required

1. If x ≡ y (mod n), z ≡ w (mod n), and GCD(z,n) = GCD(w,n) = 1, then x · z−1 ≡ y ·w−1 (mod n),
where z−1 and w−1 are the inverses of z and w (mod n).
Answer: TRUE. z and w both have the same multiplicative inverse mod n.

2. f (x) = x5 (mod 65), x ∈ {0,1, . . . ,64}, is not a bijection.
Answer: FALSE. 5 is relatively prime to (5−1)(13−1) making it a valid RSA encryption key, and
thus f is a bijection.

3. 1197 (mod 105) = 11
Answer: TRUE.
LHS evaluates to 11. 105 is made up of three primes 3, 5, and 7. By Fermat’s Little Theorem, since 11
is coprime, then 11(3−1)(5−1)(7−1) = 1148 = 1 (mod 105), therefore 1197 = (1148)2 ·11= (1)2 ·11= 11
(mod 105).

4. Polynomial 3x3 +5x2 +4x+2 is perfectly divisible by x−3 (mod 7).
Answer: TRUE. The result is 3x2 +4.

5. Every infinite subset of the set of real numbers R is uncountable.
Answer: FALSE. Consider N⊂ R.

6. There exists a program H that determines whether an arbitrary program P on input x outputs the value
of x+42 after executing 42 statements.
Answer: TRUE. H can simply run P and keep track of the “program counter”/location of statements
executed in P. If P has executed 42 statements and then prints the value of x+ 42, then it outputs
“YES”, otherwise “NO”.

7. Let p and q be prime numbers, p 6= q. Then the number of natural numbers between 1 and pq which
are relatively prime to pq is (p−1)(q−1).
Answer: TRUE.
There are q−1 multiples of p less than pq and p−1 multiples of q less than pq. Counting pq itself,
there are (p− 1)+ (q− 1)+ 1 numbers less than pq which share a common factor with pq, so the
count of numbers which are relatively prime to pq is pq− (p−1)− (q−1)−1 = (p−1)(q−1).

8. Professor Random has graded 100 exams and all scores are distinct. In class, she shuffles the exams
and begins reading the scores aloud. Let Ak be the event that the kth exam score she reads is the top
score so far. Then Ak and Ak+1 are not independent.
Answer: FALSE.
Consider the first k exams, and let Ek be the highest-scoring exam out of the first k exams. The event
Ak is the event that Ek is located at the kth position in the pile of exams. Since the exams were shuffled
beforehand, Ek is equally likely to be found in any of the first k positions, so Pr[Ak] = 1/k. Similarly,
Pr[Ak+1] = 1/(k+1). To compute Pr[Ak ∩Ak+1], observe that there are (k+1)! total permutations of
the first k+ 1 exams. Ak ∩Ak+1 is the event that Ek is in the kth position and Ek+1 is in the (k+ 1)th
position. Once we fix those positions, there are (k− 1)! permutations satisfying these constraints.
Hence, Pr[Ak∩Ak+1] = (k−1)!/(k+1)! = (1/k)(1/(k+1)) = Pr[Ak]Pr[Ak+1].
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2. Short Answers: 5x3=15 points Clearly indicate your correctly formatted answer: this is what is to be
graded.No need to justify!

1. You roll a balanced six-sided die three times. What is the probability that there are exactly two dice
whose sum is 11?
Answer: For exactly two dice to sum to 11, we need to roll a 6, a 5, and some value x ∈ {1,2,3,4}, in
any order. There are 3×2 = 6 ways to permute 6, 5, and x. There are 4 options for x in each of these
orderings. Therefore the probability is 6·4

63 since there are 63 equally likely outcomes of the three dice
rolls.

2. How many combinations of even natural numbers (x1,x2,x3,x4) are there such that
x1 + x2 + x3 + x4 = 20?
Answer: (13 choose 3). Stars and bars. Instead of 20 stars, use 10 stars (now each star represents 2).
Another way is to think of each xi = 2yi and count the number of yis that add to 10.

3. Astronomers at the University of Infinity have determined that there are countably infinite stars, and
they have given each one a unique identifier in N defined by the function: id : Stars→ N. Then, one
day, they discover a new star s and add it to Stars. How can they set id(s) to be distinct from all the
other identifiers?
Answer: Consider f = id−1. Set f (n) = f (n+ 1) for all n, and f (0) = s. That is, remap nth ID to
n+1, and give the new star the ID 0.
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4. The standard polynomial secret sharing is being used and we are working mod 5. Three shares are
required to determine the secret, encoded as P(0). We have the following shares: P(1) = 2,P(2) =
0,P(3) = 2. What is the secret?
Answer: The secret is 3.
Let P(x) = a2x2 +a1x+a0.
From the shares, we get the following set of equations:

a2 +a1 +a0 = 2

4a2 +2a1 +a0 = 0

9a2 +3a1 +a0 = 2

Solving, we get P(x) = 2x2 +2x+3.

5. Suppose x = 4 (mod 7) and x = 7 (mod 11). What is x (mod 77)?
Answer: The answer is 18. Start listing the numbers which equal 7, modulo 11: 7,18,29, . . . . Out of
these numbers, observe that 18 ≡ 4 (mod 7) so it satisfies the first equation as well. By the Chinese
Remainder Theorem, this is the unique solution. (The Chinese Remainder Theorem was not necessary
to solve this question, but it provides the justification that the solution is unique.)
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3. Short Proofs: 4+4+4+4+4=20 points

1. Let r2 = 1 (mod n). Show that, if GCD(r−1,n) = 1, then r = n−1 (mod n).
Answer: 1 = gcd(r−1,N)
1 = (r−1)u+Nv
Multiply both sides by r+1
r+1 = (r2−1)u+N(r+1)v
We know that r2−1 = 0 (mod N).
So r+1 = 0(modN) or r =−1(modN).

2. Let x1,x2, . . . ,xn be n integers, and p be a prime number. Show that:
(x1 + x2 + . . .+ xn)

p = xp
1 + xp

2 + . . .+ xp
n (mod p).

Answer: We know that ap = a (mod p) from Fermat’s Little Theorem (and the special case of a= 0).
Thus, (x1 + x2 + . . .+ xn)

p = (x1 + x2 . . .+ xn) (mod p). Also xp
i = xi (mod p), so the RHS is also

equal to (x1 + x2 . . .+ xn) (mod p).

3. Consider the function is_mod_2 below which takes as input an arbitrary program P:

def is_mod_2(P):
if (P implements the mod 2 function) then
return TRUE

else
return FALSE

Prove that is_mod_2 cannot exist.
Answer:
Reduce the halting problem to is_mod_2.
def halt(P, x):
__def t(n):
____P(x)
____return n%2
__return is_mod_2(t)

In other words, t be a function that returns mod 2 correctly if P halts on x.
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4. Assume a > b≥ 1 where a,b ∈ N. Prove ∑
a
k=b

(k
b

)
=
(a+1

b+1

)
.

Answer: RHS: Pick b + 1 representatives from a line of a + 1 candidates. LHS: Pick all b + 1
representatives from only the first k+1 candidates in the line. This means the last representative is at
position k+ 1, and the remaining b representatives must be picked from the first k positions. k has a
minimum value of b, since you can’t pick b representatives from less than k choices. k has a maximum
value of a, since there are only a+1 candidates. We sum over all possible values of k.

5. Suppose P(B|A) = P(B|Ā) where Ā is the complement of A. Prove that it must be the case that B is
independent of A.
Answer: Let P(B|A) = P(B|Ā) = p. One has

P(B) = P(A∩B)+P(Ā∩B)

= P(B|A) ·P(A)+P(B|Ā) ·P(Ā)
= p · (P(A)+P(Ā)) = p
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4. Checking Work:3+3= 6 points

Each of the parts below has some work (proof, reasoning, computation, etc.) that you must check. State the
first error you find, and explain your answer briefly.

1. Suppose Alice wishes to send Bob a confidential message using RSA. For this, Bob must first set up
his public-private key pair. Below, we show the choices Bob made in picking his keys, where he makes
at least one mistake.
Suppose that Bob chooses primes p = 7, q = 13. (Assume these are large enough.)
He computes N = pq = 91.
Then Bob chooses e = 3 so his public key is (3,91).
Finally Bob chooses d = 61 which is his private key.

Answer: The choice of e is incorrect. (p−1)(q−1) = 72 and GCD(3,72) 6= 1.

2. Proposition: Consider a set of n identical aliens who each want to pick a single color for their T-shirt
from a set of k colors. Then the number of ways of assigning colors to the aliens is kn

k! .
Proof: The first alien picks a T-shirt color in k ways.
Same for the second, third, etc. So total kn ways.
But these aliens are all identical, so we divide by the number of orderings of the k colors, which is k!.
This yields the desired answer.
Answer: Last but one line is wrong.
Second rule does not apply as discussed in class. Need to use the “stars and bars” technique instead.
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5. Sharing RSA Keys: 5+5+5=15 points

Consider a set of n people connected on a broadcast network: that is, any message sent by one person
intended for another can be received by all. Further, assume that there is exactly one malicious person on
this network, named Eve.

Recall that RSA provides Alice a secure way of sending a message to Bob provided that she knows Bob’s
public key. But how does Alice get to know Bob’s public key in the first place? She could send a message
to Bob asking him for it, but what if Eve pretends to be Bob and sends her the wrong key?

To deal with this problem, Alice decides to design a new protocol based on the secret sharing scheme studied
in class. The general idea is that Bob will send a piece of his public key to everyone, including Eve. If at
least k of those people get together, they can reconstruct Bob’s key. Otherwise, they cannot.

Answer the following questions:

(a) Recall that the public key is of the form (N,e), where N = pq. Design a polynomial P(x) that Bob can
use to share his public key using the protocol Alice designed.
Answer: We pick a polynomial P(x) of degree k− 1 where N and e are two of the coefficients, say
a0 and a1, and all other coefficients are chosen randomly. Further, we work mod r where r is the first
prime larger than N.

(b) Now suppose Alice broadcasts a request for Bob’s public key and gets back exactly k− 1 numbers.
Can Alice always recover Bob’s public key? Why or why not?
Answer: Not always. Together with her share, Alice now has k numbers. But consider what happens
if Eve is one of the k and modifies her share arbitrarily. Then, Alice will end up reconstructing a
different polynomial with possibly different coefficients a1 and a0, i.e., with a different public key.
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(c) At least how many numbers must Alice get back to be able to completely reconstruct the public key?
Justify.
Answer: She needs at least k+1.
Alice has one share (her own) that she knows to be correct. She needs to get k−1 more. Eve’s action
is like corrupting a packet. So we can apply Reed-Solomon codes and determine that Alice needs to
get shares from at least (k−1)+2 = k+1 people (since there is at most one corruption, and she needs
to get k− 1 correct numbers). Alice can then use Berlekamp-Welch decoding for the remaining to
recover the k−1 numbers, and thus the secret coefficients and the public key.
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6. Correcting Errors that Grow: 5+5=10 points

Consider a communication channel that slowly degrades over time. Specifically, it behaves as follows: Of
the first n packets, it drops none; of the second n packets, it drops 1 (but you don’t know which one); of the
third set of n, it drops some 2; and so on, until for the n+1th set of n packets (and thereafter), it drops all of
them.

In the questions below, a message is the cumulative sequence of packets transmitted over the channel over
all time. Justify all answers, supplying a proof where needed.

(a) Suppose the channel does not corrupt any packets. What is the maximum size, if any, of a message
that you can transmit through this channel using the Erasure code you studied in class?
Answer: If you want to transmit a message of length m in a channel with k erasures, you need to
transmit m+ k. So set m+ k = n for k = 0,1, . . . ,n. Then m = n,n−1,n−2, . . . ,0. Thus, the message
can be at most n+(n−1)+(n−2)+ . . .+1 = n(n+1)

2 .

(b) Now suppose that the channel does not drop packets, but corrupts packets as above — i.e., corrupts
none of the first n, an arbitrary one of the next n, etc. What is the maximum size message you can
transmit successfully using Reed-Solomon codes and Berlekamp-Welch decoding?
Answer: Recall that if you want to transmit a message of length m in a channel with k corruptions,
you need to transmit m+2k. So set m+2k = n for k = 0,1, . . . ,n. Then m = n,n−2,n−4, . . . ,0.
If we assume n is even, then message can be at most n+(n− 2)+ (n− 4)+ . . .+(n− 2 n

2) which is

[n+(n−1)+(n−2)+ . . .+ n/2
] −∑

n/2
i=1 i or (∑n

i=1 i)− (∑
n/2−1
j=1 j)− (∑

n/2
i=1 i).

If n is odd, then m = n,n−2,n−4, . . . ,1, so 1 more.
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7. Countability: 5+5=10 points

Let S be the power set of E, the set of all even natural numbers. Let T be the set of functions that map E to
{0,1}.

(a) Prove that there exists a bijection between S and T .
Answer: Since each element s ∈ S is a subset of the E, we can express s as a function fs(n) that
evaluates to 1 if n ∈ s and evaluates to 0 if n /∈ s. This is a function that maps E to {0,1}.
The mapping of s to fs is one-to-one since if s1 6= s2, then fs1 differs from fs2 for the element in the
symmetric difference of s1 and s2.
It is onto as every function fs mapping E to {0,1} has a corresponding set s – the set of all n that are
mapped to 1.

(b) Is S countable? Justify your answer.
Answer: No, each function mapping E to {0,1} can be expressed as a real number between 0 and
1, as the concatenation f (0), f (2), f (4), . . .. Thus T and therefore S are uncountable, since R[0,1] is
uncountable.
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8. Line up for Class, Randomly: 3+3+3+6=15 points

There is a class with 2n children where n are boys and n are girls. They have to stand in a line to go to class.
Assume that all possible ways in which they might line up are equally likely.

Answer the following questions. Justify/prove your answer in all cases.

(a) What is the probability that they alternate by gender?
Answer: 2·n!·n!

2n! There are n! ·n! possibilities for them to line up alternating with a girl first, and n! ·n!
possibilities for them to line up alternating with a boy first. These are disjoint events so you can add
together those countings.

(b) What is the probability that all of the girls are before all of the boys?
Answer: n!·n!

2n! There are n! ways for the girls to line up first and then n! ways for the boys to line up
behind them, and a total of 2n! ways for them to all line up.
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(c) What is the probability that between any two girls there are no boys (i.e. that all of the girls stand
together in an uninterrupted block)?

Answer: (n+1)·n!·n!
2n! There are n+1 locations that the first girl can stand (positions 1 through n+1 in

the line), and then there are n! ways for the girls to line up in their block, and then n! ways for the boys
to line up in the remaining locations.

(d) What is the probability that neither the boys nor the girls stand together in an uninterrupted block?
Answer: Let B be the event that the boys are in a contiguous block, and let G be the event that the
girls are standing in a contiguous block. We want to find Pr[B∩G] which is equivalent to:

Pr[B∩G] = Pr[B∪G]

= 1−Pr[B∪G]

= 1− (Pr[B]+Pr[G]−Pr[B∩G])

From part (c) we have that Pr[B] = Pr[G] = (n+1)·n!·n!
2n! . To get Pr[B∩G], we know that there are n!·n!

2n!
ways for the girls to all line up before the boys, so there are also n!·n!

2n! ways for the boys to line up
before the girls, so Pr[B∩G] = 2·n!·n!

2n! . Thus,

Pr[B∩G] = 1−
((n+1) ·n! ·n!

2n!
+

(n+1) ·n! ·n!
2n!

− 2 ·n! ·n!
2n!

)
= 1− (2(n+1)−2) ·n! ·n!

2n!

= 1− 2n ·n! ·n!
2n!

= 1− n! ·n!
(2n−1)!

13



SID:

(Scratch space)
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