
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Summer 2015 Instructor: Sagar Karandikar 2015-07-28

After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...
	

Last Name ANSWER KEY

First Name

Student ID Number
Login cs61c-

The name of your SECTION TA (please circle)

Derek | Harrison | Jeffrey | Nathaniel | Rebecca

Name of the person to your Left

Name of the person to your Right

All the work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in CS61C

who have not taken it yet. (please sign)

Instructions (Read Me!)
• This exam contains 7 numbered pages including the cover page. The back of each page is

blank and can be used for scratch-work but will not be looked at for grading. (i.e. the
sides of pages without the printed “SID: _______” header will not even be scanned into
Gradescope).

• Please turn off all cell phones, smartwatches, and other mobile devices. Remove all hats &
headphones. Place your backpacks, laptops and jackets under your seat.

• You have 80 minutes to complete this exam. The exam is closed book; you may not use any
computers, phones, wearable devices, or calculators. You may use one page (US Letter, front
and back) of handwritten notes in addition to the provided green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you can.
We will deduct points if your solution is far more complicated than necessary. When we
provide a blank, please fit your answer within the space provided. “IEC format” refers to the
mebi, tebi, etc prefixes.

 Q1 Q2 Q3 Q4 Q5 Total
Points
Possible 12 17 11 20 17 77

L J

SID: _________________

2/9

Q1) Potpourri (12 pts)

a) Convert the following from single-precision IEEE 754 representation to decimal: 0xFF800000

-Inf

b) Convert the following from decimal to single-precision IEEE 754 representation. Report your
answer as hex: -10.5625

0xC1290000

The following sub-questions will use the circuit below.

Given Circuit A, with a clock period of 100ns, determine the maximum theoretical setup time we can
have for this circuit to satisfy register-timing constraints (and function correctly). With this setup time,
if signals X and Y are undefined until t = 0, when would Out1 be stable with the correct computed
value?

c) Max setup time: 60ns = 100 – MAX(CriticalPath1 + CriticalPath2)

d) Out1 stable at t = 215ns = 2 clock cycles + CLK-to-Q

e) We discover that our registers are faulty and have a 30ns hold time requirement. Assuming a setup
time of 15ns and other timing parameters from the parts (a) and (b), is this a problem? If it is, suggest
the simplest change that could be made so the circuit behaves as intended.

There are hold time violations in the two middle registers. One solution
is to delay the inputs X and Y for at least 10ns. This can be done by
adding an OR gate to each signal with the signal and a constant 1 as
inputs.

Circuit specs:
• 15 ns clk-to-Q time
• Negligible hold time
• 20 ns logical gate

propagation delay
• Gates with bubbles

on the output have
the same delay as
“normal” gates

• Assume that X and
Y arrive at the
positive edge of the
clock

reg1

reg2

reg3

reg4

SID: _________________

3/9

Q2) Pipelining (17 pts)

a) Below is a copy of the diagram from the previous question. Now, you need to pipeline the circuit to
improve the clock period. Draw a star on any wire where you would place a pipelining register.
You may place up to 3 registers (but you may not need all 3). Your solution may introduce a cycle
delay, but should not change the sequence of outputs after that initial delay (assuming the circuit gets
a single uninterrupted stream of incoming X and Y values).

b) Now, assume we have a Pipelined 5-stage MIPS CPU with the following specs:

• The CPU stalls on hazards, there is no forwarding
• Branch comparison happens in stage 2 and we DO NOT have a branch delay slot. (i.e. the

branch “decision” is clocked into the PC at the end of stage 2).
• Both memory and registers CAN be written and read in the same clock cycle
• All Loads and Stores hit in the cache (ie. loads/stores take one cycle in the Mem stage)

Fill in the corresponding pipeline stages (F, D, E, M, W) at the appropriate times in the table below for
the following 8 MIPS instructions assuming the above properties of your CPU. Suppose that any
branches in the code are not taken for this specific instance. (You should use the back of the page for
scratch work)

ê Instr / Cycle # è 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
sll $v1 $v1 8 F D E M W
xor $v0 $a1 $a2 F D E M W
addu $a1 $s3 $t1 F D E M W
andi $v0 $v0 1 F D D E M W
addu $t0 $a0 $t1 F F D E M W
lw $s0 0($t0) F D D D E M W
bne $s0 $0 End F F F D D D E M W
j Taketwo F F F D E M W

Circuit specs:
• 15 ns setup time
• 15 ns clk-to-Q time
• Negligible hold time
• 20 ns logical gate

propagation delay
• Gates with bubbles

on the output have
the same delay as
“normal” gates

• Assume that X and
Y arrive at the
positive edge of the
clock

reg1

reg2

reg3

reg4

SID: _________________

4/9

Q3) Synchronous Digital Systems (11 pts)

Use the truth table below for the following questions:

st0 st1 In next_st0 next_st1 Out0 Out1

0 0 0 1 1 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 0 1 0
1 1 0 0 1 0
1 1 1 0 0 0

a) Write a Boolean formula for next_st0 using sum of products. You should not simplify the
expression you write. (Also, do not write a solution that you get “intuitively”).

(~st0 * ~st1 * ~In)+(~st0 * st1 * In)

b) Use the circuit below to fill in next_st1 in the truth table.

c) Simplify the following expression so it can be implemented with 3 basic gates (AND, OR, or NOT).
Your solution should require as few gates as possible. You do not need to fill in the table above.

𝑂𝑢𝑡1 = 𝑠𝑡0 ∗ 𝑠𝑡1 + 𝑠𝑡0 ∗ 𝑠𝑡1 + 𝑠𝑡0 ∗ 𝑠𝑡1 ∗ 𝐼𝑛
~(In+st0st1)

SID: _________________

5/9

Q4) Datapath (20 pts)

Given the new instruction beqalr represented by the RTL below, answer the following questions.

Instruction RTL
beqalr rd, rs, rt if (R[rs] == R[rt]) {

 R[31] = PC + 4;
 PC = R[rd];
}

a) Briefly describe what we would use this instruction for in a program. (Hint: think about what C code that
gets compiled into this instruction would look like.)
 We could use this instruction for conditional function calls. This is
better than a simple branch because it is not constrained by the address
range 217-4 lower to 217 higher.

b) Write equivalent TAL MIPS for the beqalr instruction. $ra should be set to the instruction after the
expanded beqalr (labeled "resume"). Our system does not have delay slots.

beqalr $s0 $t0 $t1

beqalr: bne $t1 $t0 resume

 jalr $s0

resume:

c) Now we want to modify our pipeline so that it is able to execute the beqalr instruction. Below (and
attached to the green sheet), you will find a base CPU diagram with empty boxes. For each missing piece
in the datapath, circle which options on the next page are the best in implementing beqalr. If there are
multiple working solutions, choose the one with the least hardware. The control signal for beqalr is 1 if
and only if the instruction is beqalr. RegWr is 0.

SID: _________________

6/9

i) We have the ability to modify our RegFile. Which modification is necessary for our implementation?

1 2 3 4

4. RegWr is off. We can only write if the condition is fulfilled.
ii) Select the correct modification for box (ii)

1 2 3 4

1. Our RegDst should be $ra (0b11111) if we are executing a beqalr
instruction.
iii) Select the correct modification for box (iii)

1 2 3 4

1. Our WriteEn is taken care of. If our instruction is beqalr, we need to
be writing PC+4 into our destination.

SID: _________________

7/9

iv) Select the correct modification for box (iv)

1 2 3 4

2. If our condition is fulfilled, we want to overwrite our PC with our $rd
read value.

d) Generate the control signals for beqal. The values should be 0, 1, or X (don’t care) terms. You
must use don’t care terms where possible.

beqalr RegDst ExtOp RegWr ALUSrc ALUCtr MEMWr MemToReg Jump Branch
1 x x 0 0 XXXX 0 X 0 0

SID: _________________

8/9

Q5) Caches (17 pts)

Assume we are working in a 32-bit physical address space. We have two possible data caches:
cache X is a direct-mapped cache, while cache Y is 2-way associative with LRU replacement policy.
Both are 4 KiB caches with 512 B blocks and use write-back and write-allocate policies.

a) Calculate the number of bits used for Tag, Index and Offset:

Cache Tag bits Index bits Offset bits
X 20 3 9

Y 21 2 9

Use the code below to answer the following parts. Assume that ints are 4 B and doubles are 8 B.

//211 elements in the double array
int DOUBLE_ARRAY_SIZE = 2 * 1024; //214 bytes
double double_arr[DOUBLE_ARRAY_SIZE];

for (int i = 0; i < DOUBLE_ARRAY_SIZE; i++) /* loop 1 */
 double_arr[i] = i;
for (int i = 0; i < DOUBLE_ARRAY_SIZE; i += 8) /* loop 2 */
 double_arr[i] *= double_arr[0];

b) What is the hit rate for each cache if we run only loop 1? (hint: they’re both the same). What types
of misses do we get?
 Both have a hit rate of 63/64. Compulsory

c) What is the hit rate of each cache when you execute loop 2? Assume that you have executed loop
1. Assume the worst case ordering of accesses within a single iteration of the loop if multiple orders
are possible. You may leave your answer as an expression involving products and sums of fractions.

X: ____See Below_____________________ Y: ________See Below________________
We are accessing with a stride of 8*8B = 64B while our block size is 512B.
Thus, we have 8 accesses in each block. Since the array size is 2Ki*8B =
16KiB and our caches are 4KiB, the actual data is 4 times the size of our
caches.

In cache X, the first quarter of the array will have a hit rate of 23/24
since we only encounter misses in each new block. In the rest of the array,
however, we get a ping-pong effect on the first block as the loop requires
double_arr[0]. For the 2nd-4th quarter of the array, the first block
accesses will be (double_arr[i], double_arr[0], double_arr[i]):
Access 1: M, M, M
Access 2: H, M, M
Access 3: H, M, M; then H, M, M until access 8.
This yields a hit rate of 7/24. The second through eighth block accesses
have 23/24 hit rate.

Putting it all together, since we are accessing 4*8 blocks in total,
Hit rate = 29/32 * 23/24 + 3/32 * 7/24

SID: _________________

9/9

Cache Y has a hit rate of 23/24 because there is no ping-pong effect in
the first block.

d) Compute the AMAT for the following system with 3 levels of caches. (You should not need any
information from the previous parts of this problem.) Give your answer as a decimal value.

L1$ L2$ L3$ Main Memory
Global miss rate: 50%

Hit time: 1ns
Local miss rate: 20%

Hit time: 5ns
Local miss rate: 1%

Hit time: 15ns
Hit time: 500ns

1 + .5*(5 + .20*(15 + .01*(500))) = 5.5 ns

