# First Midterm Examination Tuesday September 27 2016 Closed Books and Closed Notes Answer Both Questions

# Question 1 A Particle on a Moving Plane Curve (25 Points)

As shown in Figure 1, a particle of mass m is attached to a fixed point O by a linear spring of stiffness K and unstretched length  $\ell_0 = 0$ . The particle is free to move on a plane curve which is given a vertical oscillation  $A\cos(\omega t)$ . A vertical gravitational force  $-mg\mathbf{E}_2$  also acts on the particle.

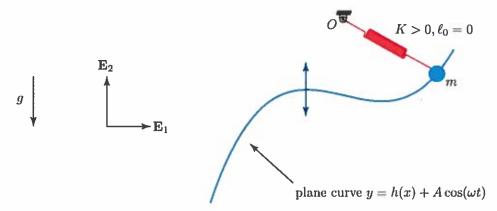


Figure 1: Schematic of a particle of mass m which is attached to a fixed point O by a spring and is free to move on a plane space curve. A vertical gravitational force  $-mg\mathbf{E}_2$  acts on the particle.

The following coordinate system and its associated covariant basis vectors are used to describe the motion of the particle:

$$q^1 = x,$$
  $q^2 = y - h(x),$   $q^3 = z.$  (1)

- (a) (5 Points) What are the covariant basis vectors associated with this coordinate system?
- (b) (5 Points) What are the contravariant basis vectors associated with this coordinate system?
- (c) (5 Points) What are the constraints on the motion of the particle? Give a prescription for, and a physical interpretation of, the constraint force enforcing this constraint. In your solution assume that the curve is smooth.
- (d) (5 Points) What are  $\tilde{T}$  and  $\tilde{U}$  of the particle? Why isn't  $\tilde{T} + \tilde{U}$  conserved during a motion of the particle?
- (e) (5 Points) Show that the equation of motion of the particle is

$$m\left(1+h'h'\right)\ddot{x}+mh'h''\dot{x}^{2}=-mh'\left(g-A\omega^{2}\cos\left(\omega t\right)\right)-K?\tag{2}$$

where  $h' = \frac{\partial h}{\partial x}$  and  $h'' = \frac{\partial^2 h}{\partial x^2}$ . For full credit supply the missing term.

As shown in Figure 2, a particle of mass m is free to move on a rotating surface of revolution z = f(r). The surface is rotating about a vertical axis with a speed  $\Omega = \Omega(t)$ .

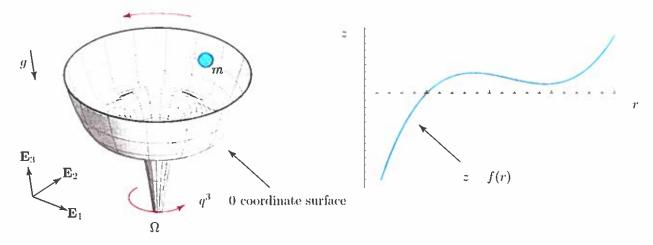


Figure 2: Schematic of a particle of mass m which is moving on a surface of revolution in  $\mathbb{E}^3$  under the influence of a gravitational force—mgE<sub>3</sub>.

To establish the equations of motion for the particle, the following curvilinear coordinate system is defined for  $\mathbb{E}^3$ :

$$q^{1} = r,$$
  $q^{2} = \theta,$   $q^{3} = \eta = z - f(r).$  (3)

In your answers, please make use of the results on cylindrical polar coordinates on Page 3.

(a) (5 Points) Show that the covariant basis vectors  $\mathbf{a}_k$  for this coordinate system are

$$\mathbf{a}_1 = \mathbf{e}_r + f' \mathbf{E}_3, \qquad \mathbf{a}_2 = r \mathbf{e}_\theta, \qquad \mathbf{a}_3 = \mathbf{E}_3,$$
 (4)

where  $f' = \frac{\partial f}{\partial r}$ . Compute the matrix  $[a_{ik}]$ .

(b) (5 Points) Show that the contravariant basis vectors for this system are

$$\mathbf{a}^{1} = ?, \qquad \mathbf{a}^{2} = \frac{1}{r} \mathbf{e}_{\theta}, \qquad \mathbf{a}^{3} = ??.$$
 (5)

For full credit, supply the missing terms.

(c) (10 Points) Suppose that the particle is moving on the smooth surface of revolution z = f(r) under a gravitational force  $-mg\mathbf{E}_3$ . Show that the differential equations of motion are

$$m\left(1+f'f'\right)\ddot{r}-mr\dot{\theta}^2+???=-mgf',\qquad \frac{d}{dt}\left(mr^2\dot{\theta}\right)=0. \tag{6}$$

For full credit, supply the missing terms.

- (d) (5 Points) Answer either (i) or (ii):
  - (i) Show that the total energy E and the angular momentum  $\mathbf{H}_O \cdot \mathbf{E}_3$  of the particle are conserved during its motion on the surface of revolution.
- (ii) For the specific f(r) shown in Figure 2, what are the equilibria of the equations (6) and why are there infinitely many of them?

#### **Notes on Cylindrical Polar Coordinates**

Recall that the cylindrical polar coordinates  $\{r, \theta, z\}$  are defined using Cartesian coordinates  $\{x = x_1, y = x_2, z = x_3\}$  by the following relations:

$$r = \sqrt{x_1^2 + x_2^2}$$
,  $\theta = \arctan\left(\frac{x_2}{x_1}\right)$ ,  $z = x_3$ .

In addition, it is convenient to define the following orthonormal basis vectors:

$$\begin{bmatrix} \mathbf{e}_r \\ \mathbf{e}_{\theta} \\ \mathbf{E}_3 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \\ \mathbf{E}_3 \end{bmatrix}.$$

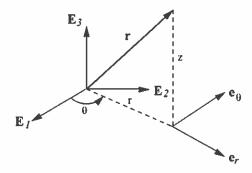


Figure 3: Cylindrical polar coordinates

For the coordinate system  $\{r, \theta, z\}$ , the covariant basis vectors are

$$\mathbf{a}_1 = \mathbf{e}_r$$
,  $\mathbf{a}_2 = r\mathbf{e}_\theta$ ,  $\mathbf{a}_3 = \mathbf{E}_3$ .

In addition, the contravariant basis vectors are

$$a^1 = e_r$$
,  $a^2 = \frac{1}{r}e_\theta$ ,  $a^3 = E_3$ .

The gradient of a function  $u(r, \theta, z)$  has the representation

$$\nabla u = \frac{\partial u}{\partial r} \mathbf{e}_r + \frac{\partial u}{\partial \theta} \frac{1}{r} \mathbf{e}_{\theta} + \frac{\partial u}{\partial z} \mathbf{E}_3.$$

For a particle of mass m which is unconstrained, the linear momentum  $\mathbf{G}$ , angular momentum  $\mathbf{H}_O$ , and kinetic energy T of the particle have the representations

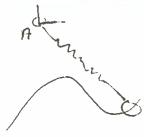
$$\mathbf{G} = m\dot{r}\mathbf{a}_{1} + m\dot{\theta}\mathbf{a}_{2} + m\dot{z}\mathbf{a}_{3},$$

$$\mathbf{H}_{O} = -mrz\dot{\theta}\mathbf{e}_{r} + m(z\dot{r} - r\dot{z})\mathbf{e}_{\theta} + mr^{2}\dot{\theta}\mathbf{E}_{3},$$

$$T = \frac{m}{2}\left(\dot{r}^{2} + r^{2}\dot{\theta}^{2} + \dot{z}^{2}\right).$$

## QUESTION 1





$$q' = x$$

$$q' = y - h(x)$$

$$q^{3} = 2$$

$$q^{4} = y - h(x)$$

$$q^{5} = 2$$

$$q^{7} = 4 - h(q^{7}) = 4 -$$

- 91 = E1 + h Ez , 91 = E2, 90 = E3
- (b)  $Q' = \nabla Q' = E_1$   $Q' = \nabla Q' = E_2 - h'E_1$  $Q^3 = \nabla Q^3 = E_3$
- Constraints  $q^3 = 0$  and  $q^2 Habet = 0$ .  $F_c = \lambda_1 a^2 + \lambda_2 a^3$   $F_c = r_{lorand}$  Jack act, on particle.
- (d)  $\tilde{T} = \frac{1}{2}m\left(\dot{x}\underline{a}_{1} + A\omega S_{1}n\omega t \underline{a}_{2}\right).\left(\dot{x}\underline{a}_{1} + A\omega S_{1}n\omega t \underline{a}_{2}\right)$   $= \frac{1}{2}m\left((1+h'h')\dot{x}^{2} + A^{2}\omega^{2}S_{1}n^{2}\omega t 2h'A\omega S_{1}n\omega t\dot{c}\right)$   $\tilde{u} = \left(mgy = mg(h(x) + Acos\omega t)\right) + \frac{1}{2}K\left(\dot{x}^{2} + \left(Acos\omega t + h\right)^{2}\right)$   $\dot{E} = \dot{T} + \dot{\tilde{u}} = F_{nc} \cdot \underline{V} = \left(\lambda_{1}a^{2} + \lambda_{L}a^{3}\right).\underline{V} = \lambda_{1}\left(-AS_{1}n\omega t\dot{\omega}\right)$  = 0.
- (4) Eaution of motion.

$$\frac{d}{dt} \left( \frac{\partial \widetilde{T}}{\partial \dot{x}} = m(1+h'h') \dot{x} - hm A \omega \mathcal{L}_{in} \omega t \right)$$

$$- \left( \frac{\partial \widetilde{T}}{\partial x} = mh'h'' \dot{x} \dot{c}^2 - mh'' A \omega \dot{x} \dot{S}_{in} \omega t \right)$$

$$= -\frac{\partial \widetilde{U}}{\partial x} = -mgh' - K(x + (ACoowt + h)h')$$

Expond the dt beim

$$m(1+hh')\dot{x} + 2mh'h''\dot{x}^2 - mAwSinwth''\dot{x}$$
 $- mAw^2Coswth'$ 
 $- mh'h''\dot{x}^2 + mAw\dot{x}Sinwth''\dot{x}$ 

$$= -mgh' - Kx - K(ACoswt+h)h'$$

Concelling some eauch and opposite terms.

$$m(1+h'h')\dot{x} + mh'h'\dot{x}^2 = -mg(h')(g - h\omega^2 G \omega t)$$
  
-  $K \propto - K(A G \omega t + h)h'$ 

## QUESTION 2

(a) 
$$9' = 7$$
,  $9^2 = 0$   $9^3 = 7 = 2 - f(7)$ 

$$\begin{bmatrix} q_{ik} \end{bmatrix} = \begin{bmatrix} 1+5'5' & 0 & 5' \\ 0 & 7^2 & 0 \\ 5' & 0 & 1 \end{bmatrix}$$

9n cylindrical polar coordinates 
$$VU = \frac{\partial u}{\partial r} er + \frac{1}{r} \frac{\partial u}{\partial \theta} er$$
+  $\frac{\partial u}{\partial \theta} e$ 

$$\underline{\alpha}' = \nabla \Gamma = \underline{e}_{\Gamma}$$
 $\underline{\alpha}^2 = \nabla \theta = \frac{1}{\Gamma}\underline{e}_{\theta}, \quad \underline{\alpha}^3 = \nabla \eta = \underline{e}_{\theta} - \underline{s}'\underline{e}_{\Gamma}$ 

(C) Essient to me approach II have

$$\tilde{T} = \frac{1}{2}m(1+f'f')\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2 \qquad (\mathcal{R}=0, \dot{\eta}=0)$$

$$\tilde{u} = mgE_3.\Gamma = mg(\eta+f) = mgf$$

$$\frac{d}{dt}\left(\frac{\partial \widetilde{T}}{\partial \dot{r}} = m(1+f'f')\dot{r}\right) - \left(\frac{\partial \widetilde{T}}{\partial r} = mr\dot{\theta}^{2} + 1mf'f''\dot{r}^{2}\right)$$

$$= -\frac{\partial \widetilde{U}}{\partial r} = -mgf'$$

$$\frac{d}{dt}\left(\frac{\partial \widetilde{T}}{\partial \dot{\theta}} = mr^{2}\dot{\theta}\right) - \left(\frac{\partial \widetilde{T}}{\partial \theta} = 0\right) = -\frac{\partial \widetilde{U}}{\partial \theta} = 0$$

Simplifying

$$m(1+5'5')\ddot{r} - mr\ddot{\theta}' + m5'5''\ddot{r}^2 = -mg5'$$

$$\frac{d}{dr}(mr^2\dot{\theta}) = 0$$

(d) (i) 
$$\dot{E} = Fnc. V = \lambda \dot{q}^3. V = 0$$
 become  $V = \dot{q}^1 \dot{q}_1 + \dot{q}^2 \dot{q}_2$ .

Hence  $E = T + \tilde{u}$  is conserved.

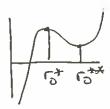
Glandially
$$\frac{d}{dt}(Ho \cdot E) = mr^{2}\partial = \frac{d}{dt}(mr^{2}\partial) = 0 \quad \text{from LEm.}$$

$$\frac{d}{dt}(Ho \cdot E) = Ho \cdot E = (r \times F) \cdot E = (r$$

(d) (ii) Earlbria occur when 
$$\theta=\theta_0$$
,  $\theta'=0$ ,  $\Gamma=\Gamma_0$ ,  $\Gamma'=0$ 

From Eom we see that these condition are Schisfied when  $f'=0$  and  $\theta_0$  is arbitrag.

Honce for f (r)



we find 2 circles of earlbria: one for  $r_s^+ = r_s$  and the other for  $r_s^{**} = r_a$ .

There are so many earlbria because  $\theta$  is orbitary.