
CS 189
Fall 2016

Introduction to
Machine Learning Midterm

• Do not open the exam before you are instructed to do so.

• The exam is closed book, closed notes except your one-page cheat sheet.

• Usage of electronic devices is forbidden. If we see you using an electronic device (phone, laptop, etc.) you will
get a zero.

• You have 1 hour and 20 minutes.

• Write your initials at the top right of each page (e.g., write “BR” if you are Ben Recht).

• Mark your answers on the exam itself in the space provided. Do not attach any extra sheets.
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First and last name of student to your left
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Q1. [25 pts] Clip Loss
Let S = {(x1, y1), . . . (xn, yn)} be a set of n points sampled i.i.d. from a distribution D. This is the training set with
xi ∈ Rd being the features and yi ∈ {−1, 1} being the labels. Define the clip loss of a linear classifier w ∈ Rd as

loss(wTx, y) = clip(ywTx)

Where clip is the function

clip(z) =


1 if z < 0

0 if z ≥ 1

1− z otherwise.

For any d-dimensional vector w, define the risk of w as

R[w] = ED[loss(wTx, y)] ,

and the empirical risk of w as

RS [w] =
1

n

n∑
i=1

loss(wTxi, yi) .

(a) [5 pts] Is the function clip convex? If you would like, you can justify your answer by drawing a picture. It is
not convex. Drawing the function shows that the line from (−1, 1) to (1, 0) lies below the graph of the clip
function.

(b) [5 pts] Show that if RS [w] = 0 and ‖w‖22 < 1, then the margin of the hyperplane defined by w is greater than
1. The margin of the hyperplane is defined as

min1≤i≤n(yi(w
Tx))

‖w‖22

If RS [w] = 0, then the numerator is greater than or equal to 1 for all i. Moreover, if ‖w‖22 < 1, the denominator
is less than 1. Hence, the margin is greater than 1.

2



(c) [5 pts] Prove that ES [RS [w]] = R[w].

E

[
1

n

n∑
i=1

loss(wTxi, yi)

]
=

1

n

n∑
i=1

E
[
loss(wTxi, yi)

]
=

1

n

n∑
i=1

R[w] = R[w]

(d) [5 pts] Prove that Var(RS [w]) ≤ 1
n .

Var(RS [w]) = E
[
(RS [w]−R[w])2

]
=

1

n2

n∑
i=1

n∑
j=1

E(loss(wTxi, yi)−R[w])(loss(wTxj , yj)−R[w])

=
1

n2

n∑
i=1

E
[
(loss(wTxi, yi)−R[w])2

]
=

1

n
E
[
(loss(wTx, y)−R[w])2

]
≤ 1

n

Here, the first line is the definition of variance, the second line expands the square, the third line follows because
(xi, yi) and (xj , yj) are independent. The fourth line follows because the (xi, yi) are identically distributed.
The last line follows because the clip loss is nonnegative and bounded above by 1.

Alternate proof of first 4 steps:

Var(RS [w]) = Var(
1

n

n∑
i=1

loss(wTxi, yi))

=
1

n2
Var(

n∑
i=1

loss(wTxi, yi))

=
1

n2

n∑
i=1

Var(loss(wTxi, yi), by i.i.d

=
1

n
Var(loss(wTx, y))

(e) [5 pts] Is it possible to have a w such that RS [w] = 0, but R[w] > 0? Justify your answer. Yes. Consider
the case when n = 1. Then it is possible to classify the single data point correctly while classifying all of the
opposite class incorrectly.
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Q2. [25 pts] Regularization
We consider here a discriminative approach for solving the classification problem illustrated in Figure 1.

Figure 1: The two-dimensional labeled training set, where ‘+’ corresponds to class y = 1 and ‘O’ corresponds to
class y = 0.

Suppose we attempt to solve the binary classification task depicted in Figure 1 with the simple linear logistic regression
model

P (y = 1|x,w) = g(w0 + w1x1 + w2x2) =
1

1 + exp(−w0 − w1x1 − w2x2)

Notice that training data can be separated with zero training error with a linear separator.

Consider training regularized logistic regression model where we try to maximize

n∑
i=1

logP (yi|xi, w0, w1, w2)− Cw2
j

for very large C. The regularization penalties used in penalized conditional log-likelihood estimation are −Cw2
j

where j ∈ {0, 1, 2}. In other words, only one of the parameters is regularized in each case. Given the training data in
Figure 1, how does the training error change with regularization of each parameter wj? State whether the training
error increases or stays the same (zero) for each wj for large C. Provide a brief justification for each of your answers.

(a) [5 pts] By regularizing w2

Remains the same. When we regularize w2, the resulting boundary can rely less and less on the value of x2
and therefore becomes more vertical and training data can be separated with zero training error with a vertical
linear separator.

(b) [5 pts] By regularizing w1

Increases. When we regularize w1, the resulting boundary can rely less and less on the value of x1 and therefore
becomes more horizontal. For very large C, the training error increases as there is no good linear horizontal
separator of the training data.

(c) [5 pts] By regularizing w0

Increases. When we regularize w0, the boundary will eventually go through the origin (bias term set to zero).
Based on the figure, we can not find a linear boundary through the origin with zero error. The best we can get
is one error.
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Now suppose we want to regularize both w1 and w2. This means we want to maximize the penalized log-likelihood

n∑
i=1

logP (yi|xi, w0, w1, w2)− C(w2
1 + w2

2)

Consider again the problem in Figure 1 and the same linear logistic regression model P (y = 1|x,w) = g(w0 +w1x1 +
w2x2).

(d) [5 pts] For very large C, which value(s) do you expect w0 to take? Explain briefly. (Note that the number of
points from each class is the same.) (You can give a range of values for w0 if you deem necessary). For very
large C, both w1 and w2 will go to zero. Note that when w1 = w2 = 0, the log-probability of labels becomes
a finite value, which is equal to n log(0.5), i.e. w0 = 0. In other words, P (y = 1|x,w) = P (y = 0|x,w) = 0.5.
We expect so because the number of elements in each class is the same and so we would like to predict each
one with the same probability, and w0 = 0 makes P (y = 1|x,w) = 0.5.

(e) [5 pts] Assume that we obtain more data points from the ‘+’ class that corresponds to y = 1 so that the
class labels become unbalanced. Again for very large C, with the same regularization for w1 and w2 as above,
which value(s) do you expect w0 to take? Explain briefly. (You can give a range of values for w0 if you deem
necessary). For very large C, we argued that both w1 and w2 will go to zero. With unbalanced classes where
the number of ‘+’ labels are greater than that of ‘o’ labels, we want to have P (y = 1|x,w) > P (y = 0|x,w).
For that to happen the value of w0 should be greater than zero which makes P (y = 1|x,w) > 0.5.
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Q3. [25 pts] Bias-variance tradeoff in linear regression
Recall the statistical model for linear regression from lecture. Fix a set of points x1, x2, ..., xn ∈ Rd and an unknown
regressor θ∗ ∈ Rd. Suppose we observe y1, y2, ..., yn ∈ R via the process

yi = xTi θ∗ + εi,

where the noise vector ε :=


ε1
ε2
...
εn

 ∈ Rn satisfies

Eε = 0, Cov(ε) = σ2In .

Using the convention from lecture, we write

X :=


−xT1−
−xT2−

...
−xTn−

 ∈ Rn×d, Y :=


y1
y2
...
yn

 ∈ Rn .

With this notation, our statistical model is equivalent to

Y = Xθ∗ + ε .

You may assume throughout this problem that the matrix XTX is invertible. Recall the two least-squares estimators
we studied in lecture

θ̂ols = arg min
θ∈Rd

1

2
‖Xθ − Y ‖22 (OLS)

θ̂ridge = arg min
θ∈Rd

1

2
‖Xθ − Y ‖22 +

λ

2
‖θ‖22 (Ridge) .

For the Ridge estimator, you can assume that λ > 0 is known and fixed throughout the problem.

(a) [5 pts] Write down the closed form solutions for θ̂ols and θ̂ridge. Simply state the answer, no need to rederive it.

Answer:

θ̂ols = (XTX)−1XTY

θ̂ridge = (XTX + λId)
−1XTY .
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(b) [5 pts] Let θ̂ ∈ Rd denote any estimator of θ∗. In the context of this problem, an estimator θ̂ = θ̂(X,Y ) is any
function which takes the data X and a realization of Y , and computes a guess of θ∗.

Define the MSE (mean squared error) of the estimator θ̂ as

MSE(θ̂) := E‖θ̂ − θ∗‖22 .

Above, the expectation is taken w.r.t. the randomness inherent in ε. Define µ̂ := Eθ̂. Show that, as we did in
lecture, the MSE decomposes as such

MSE(θ̂) = ‖µ̂− θ∗‖22 + Tr(Cov(θ̂)) .

Hint: Expectation and trace commute, so ETr(A) = Tr(EA) for any square matrix A.

Answer:

E‖θ̂ − θ∗‖22 = E‖(θ̂ − µ̂)− (θ∗ − µ̂)‖22
= E‖θ̂ − µ̂‖2 − 2E〈θ̂ − µ̂, θ∗ − µ̂〉+ E‖θ∗ − µ̂‖22
= E‖θ̂ − µ̂‖2 + ‖θ∗ − µ̂‖22
= ETr((θ̂ − µ̂)(θ̂ − µ̂)T) + ‖θ∗ − µ̂‖22
= Tr(E(θ̂ − µ̂)(θ̂ − µ̂)T) + ‖θ∗ − µ̂‖22
= Tr(Cov(θ̂)) + ‖θ∗ − µ̂‖22 .

(c) [5 pts] Show that

Eθ̂ols = θ∗, Eθ̂ridge = (XTX + λId)
−1XTXθ∗ .

That is, θ̂ols is an unbiased estimator of θ∗, whereas θ̂ridge is a biased estimator of θ∗.

Answer: For OLS,

θ̂ols = (XTX)−1XTY

= (XTX)−1XT(Xθ∗ + ε)

= θ∗ + (XTX)−1XTε .

Hence, since Eε = 0, Eθ̂ols = θ∗.

Similarly,

θ̂ridge = (XTX + λId)
−1XTY

= (XTX + λId)
−1XT(Xθ∗ + ε)

= (XTX + λId)
−1XTXθ∗ + (XTX + λId)

−1XTε ,

and therefore Eθ̂ridge = (XTX + λId)
−1XTXθ∗.
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(d) [10 pts] Let γ1 ≥ γ2 ≥ ... ≥ γd denote the d eigenvalues of the matrix XTX arranged in non-increasing order.
First, argue that the smallest eigenvalue, γd, is positive (i.e. γd > 0). Then, show that

Tr(Cov(θ̂ols)) = σ2
d∑
i=1

1

γi
, Tr(Cov(θ̂ridge)) = σ2

d∑
i=1

γi
(γi + λ)2

.

Finally, use these formulas to conclude that

Tr(Cov(θ̂ridge)) < Tr(Cov(θ̂ols)) .

NOTE: The inequality above was incorrectly stated on the exam. It is fixed in the solutions. Because of this,
we are awarding one free point for every student regardless of whether or not they attempted this question.
Hint: For the Ridge variance, consider writing XTX in terms of its eigen-decomposition UΣUT.

Answer: For OLS, we simply compute

Tr(E(XTX)−1XTεεTX(XTX)−1) = σ2 Tr((XTX)−1XTX(XTX)−1)

= σ2 Tr((XTX)−1)

= σ2
d∑
i=1

1

γi
.

For Ridge, writing XTX = UΣUT, observe that

(XTX + λId)
−1 = U(Σ + λId)

−1UT

(XTX + λId)
−1XTX = U(Σ + λId)

−1ΣUT .

Hence,

Tr(E(XTX + λId)
−1XTεεTX(XTX + λId)

−1) = σ2 Tr((XTX + λId)
−1XTX(XTX + λId)

−1)

= σ2 Tr(U(Σ + λId)
−1Σ(Σ + λId)

−1UT)

= σ2 Tr(Σ(Σ + λId)
−2)

= σ2
d∑
i=1

γi
(γi + λ)2

.

The inequality Tr(Cov(θ̂ridge)) < Tr(Cov(θ̂ols)) holds because (γi + λ)2 > γ2i for all 1 ≤ i ≤ d.
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Q4. [15 pts] Nonlinear regression
In this problem, we’ll come up with a method for estimating the acceleration on an object from noisy measurements
of its position. We have noisy observations of the position of an object (p(t)) (in 1D) at n points in time:

pv = [p0, . . . , pn]

tv = [t0, . . . , tn].

pi is a noisy measurement of p(ti). We believe the object is undergoing constant acceleration (a = p′′(t)).

Note that this means that p(t) = 1
2at

2 + v(0)t+ p(0) where v(0) is the initial velocity and p(0) is the initial position
of the object.

(a) [5 pts] Suppose that v(0) = 0 and p(0) = 0. Write down a least squares problem to estimate a from the noisy
measurements pv.

min
a
‖(1

2
tv.

2)a− pv‖22.

(b) [5 pts] Solve the optimization problem and give your answer in terms of pv and tv.

â =
2
∑
i t

2
i pi∑

i t
4
i

.

(c) [5 pts] Now suppose the initial position and the velocity of the object are unknown; write down (but don’t
solve) a least squares problem to estimate the initial position and velocity along with the acceleration of the
object.

A = [1, tv,
1

2
tv.

2], y = pv.
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