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Department of Electrical Engineering and Computer Sciences 
Summer 2016          Instructors: Shreyas Chand, Justin Hsia          2016-07-07 

Last Name (Please print clearly)  

First Name (Please print clearly)  

Student ID Number  

Circle the name of your Lab TA Alex     Brian     Jinglin    Nate     Reese     Steven 

Name of the person to your: Left | Right   

All my work is my own. I had no prior knowledge of the exam 
contents nor will I share the contents with others in CS61C who 

haven’t taken it yet. (please sign) 

 

 

Instructions 
● This booklet contains 8 pages including this cover page.  The back of each page is blank and can be 

used for scratch work, but will not be graded (i.e. not even scanned into Gradescope). 
● Please turn off all cell phones, smartwatches, and other mobile devices.  Remove all hats, headphones, 

and watches.  Place everything except your writing utensil(s), cheat sheet, and beverage underneath 
your seat. 

● You have 80 minutes to complete this exam.  The exam is closed book: no computers, tablets, cell 
phones, wearable devices, or calculators.  You are allowed one page (US Letter, double-sided) of 
handwritten notes. 

● There may be partial credit for incomplete answers; write as much of the solution as you can.   
● Please write your answers within the boxes and blanks provided within each problem! 

 

Question 1 2 3 4 5 6 Total 

Possible Points 15 12 19 16 12 9 83 

 
If you have the time, feel free to doodle on this front page! 
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Question 1:  Number Representation (15 pts) 
 

a) Complete the tables below: 
Convert unsigned integers:  Convert to and from IEC prefixes: 

Base 8 Hexadecimal  Standard IEC Prefixes 

1158    16 Pebi-bits 

 0x1A  2048 students  

 
b) Due to limitations in storage space, we are using only 4 bits to represent integers. 
 

1) What is the most negative 2’s complement signed integer (decimal) we can represent? 
 

 
2) What is the value (decimal) of the 2’s complement number 0b1010? 

 

 
3) Write a number (binary) that, when added to 0b0100, will cause signed overflow. 

 

 
c) An amino acid is defined by a set of 3 consecutive nucleotides (A, C, G, or T).  For example, ATG is 

Methionine.  All combinations are unique (e.g. ATG ≠ AGT ≠ GTA). 
 

1) How many total possible amino acids are there? 
 

 
2) In reality, there are 21 amino acids found in the human body.  How many bits would it take to encode 

these amino acids in binary? 
 

 
3) Scientists also use single-digit encodings for amino acids (e.g. ‘A’ for Alanine).  In a single sentence, 

explain why it is okay that we use A for the amino acid Alanine, the nucleotide adanine, and the hex 
representation of the decimal number 10. 

 
 

 
4) We wish to encode the 21 amino acids in base 2, 3, or 5.  Which of these choices allows for the MOST 

new amino acids discoveries before needing to increase the number of digits and how many new 
discoveries are allowed in this choice? 

Base:  
Possible New 
Discoveries:  
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Question 2:  C Potpourri (12 pts) 
 

a) Given the library function rand() that returns a random number between 0 and (2^32)-1 when called, 
write a valid C expression that uses bit operations (^, ~, |, &)to initialize the variable r with a random 
integer between 0 and n, which is some power of 2 less than (2^32)-1. 

int n = 8; // In this case, we want r to contain one of {0,1,2,3,4,5,6,7}. 

int r = _______________________________; 

 
b) Sally Stanfurd tells you that using a random number generator function is silly in C. She claims that since 

local variables are not automatically initialized we can use the garbage contained in them as random values.   

Does Sally’s function produce truly random values (circle one)?  Yes  //  No  

Briefly explain why or why not. 

 
 

 
c) Complete the implementation of the integer array shuffle function below, which randomizes the ordering of 

the first n entries of a given integer array. Each of the first n entries in the array should be swapped with an 
earlier entry exactly once, and the rest of the array should be left unchanged.  Assume you have access to 
a function random(int r) that returns a number between 0 and r-1, inclusive.  

 
void shuffle(int* array, int n) { 

for (int i = n - 1;___________; ___________) { 

____________________________ 

 ____________________________ 

     *(array________) = ______________; 

array[________] = ______________; 
} 

} 

 
d) Assume integers are 32 bits.  Instead of passing in an integer array as expected, we decide to pass in a 

string to our shuffle function as shown: 
char str[] = “fee fie foh fum ”; 
shuffle((int*) str, strlen(str)/sizeof(int)); 
printf(“shuffle result: %s”,str); 

From the following choices, circle ONE of the following if it is a possible result of the printf statement: 

Runtime Error  
(e.g. seg fault) 

“fum foh fee fie ” 

Compiler Error 
(e.g. incompatible pointer types) 

“ioe h ef uf fmef” 
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Question 3:  C Structs and Memory (19 pts) 
 

A sparse matrix is a matrix in which most of the elements are zero.  For matrices of 𝑀 rows and 𝑁 columns, 
instead of storing all 𝑀 ∗ 𝑁 entries in an array, we can save memory for large matrices by instead only storing 
the nonzero entries in linked lists.  Here we store an array of pointers to linked lists (row_ptrs), one entry for 
each row of the matrix.  Each linked list node will contain (1) the column number, (2) the nonzero integer entry, 
and (3) a pointer to the next node.  Each linked list will be unsorted.  Both rows and columns are zero-indexed. 

For example, the diagram below corresponds to the matrix 
0 0
−4 0
0 0

1 0
5 0
0 0

, where 𝑀 = 3 and 𝑁 = 4: 

 
 
The struct definition for the nodes is given below on the left.  On the right are the declarations for both matrix 
representations: the usual (array) and our new (sparse) designs. 

 struct node {     Array Matrix Storage 
  int col;     int array[]; 
  int num; 
  struct node *next;   Sparse Matrix Storage 
 };       struct node **row_ptrs; 
 
 
a) If we have a matrix with 𝑀 = 8, 𝑁 = 10, and 4 nonzero entries, how much memory (in bytes) would each of 

the following use?  Here an integer is 4 bytes and a pointer is 8 bytes. 

Array Matrix Storage Sparse Matrix Storage 
array: *row_ptrs: struct nodes: 

 
 
b) Complete the following function makeNode(), which creates a new struct node for use in other 

functions and initializes the col and num fields to the provided arguments.  You can ignore running out of 
memory and you may not need all lines. 

struct node* makeNode(int column, int number) { 

 ____________ newNode = _________________________________; 

 ___________________________ 

 ___________________________ 

 ___________________________ 

 return ____________________; 

} 



SID: ________________ 
 

 5 

 
c) Complete the following function setNum(), which sets a nonzero value in our sparse matrix structure.  If 

(row, col) already had a nonzero value, then overwrite the existing value, otherwise add a new struct 
node at the end of the linked list to hold the value. 
 
You should use makeNode(int column, int integer) to create any new nodes. You may not need 
all lines or declared variables. 

void setNum(struct node **row_ptrs, int row, int col, int num) { 

struct node *prev, *curr;  /* short for previous and current */ 

curr = ____________________; 

______________________________ 

/* insert at front of row */ 
if (____________________) { 

______________________________ 

return; 

} 

/* traverse linked list */ 
while (____________________) { 

if (____________________) { 

______________________________ 

______________________________ 

} 

______________________________ 

curr = ____________________; 

} 

/* add to end of list */ 
______________________________ 

return; 

} 
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Question 4:  MIPS Procedures (16 pts) 
 

We wish to write the function toLower, which converts a string of letters to lowercase.  toLower takes in a 
char pointer, leaves spaces as spaces (assume only letters and spaces), and returns the number of converted 
characters (including spaces but not including the null terminator).  Example:  if strcpy(p,“TeST oNe”), 
then toLower(p) returns 8 and *p now contains “test one”. 
 
a) Complete the table below: 

 ‘a’ ‘z’ ‘A’ ‘Z’ Space 
Decimal  122 65  32 

Binary 0b 0110 0001 0b 0111 1010 0b 0100 0001 0b 0101 1010 0b 0010 0000 
 
b) Based on the information above, fill in the C function prototype below and then write out the C assignment 

that performs the lowercase conversion using bit manipulation on a given variable char c: 

Function prototype:     ________ toLower(________ p);___ 

Lowercase conversion:  _______________________________;___ 

c) Fill in the recursive MIPS implementation of toLower below, following proper MIPS calling 
conventions.  Write labels to the left of the provided lines.  You may not need all lines provided.  You will 
be deducted points for using extraneous lines. 

toLower: 
  __________________________ # prologue 

  __________________________ 

  __________________________ 

  __________________________ # read char using $a0 

  _____ $t0, $zero, lower # check for null terminator 

  __________________________ # base case 

  j   return 

  __________________________ # recursive case; to lowercase 

  __________________________ # store char 

 __________________________ # move to next char 

  __________________________ # recurse 

  __________________________ 

  __________________________ # epilogue 

  __________________________  

  __________________________ # return 
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Question 5:  MIPS Instruction Formats (12 pts) 
 

For a new microprocessor, we’re going to use a MIPS-like assembly language but with 16-bit words and 
instructions.  We want all of the same instruction fields as MIPS, but now need to resize them. 
 
 
a) Can we still support 32 registers (circle one)?  Yes  //  No 

 
Provide a brief explanation. 

 
 

 
 
b) If we want to keep the J-format instructions (j and jal) but want a target address field of 12 bits, what is 

the maximum number of I-format instructions we can support?  (Hint: don’t forget about R-format) 
 

 
 
c) If our immediate field is 9 bits wide, what is the maximum jump forward a program could make (relative to 

the current instruction, not the next instruction) with a single branch instruction?  Answer in number of 
instructions. 

 

 
 
d) Using the following arbitrary choices for field sizes, translate the following MIPS-like instruction into machine 

code for our new microprocessor.  Assume the same instruction and register numbering systems as MIPS. 

srl $2, $3, 2 

opcode (3) rs (2) rt (2) rd (2) shamt (4) funct (3) 

       
 
 
e) Stanley Stanfurd claims that for 16-bit words, our shamt field must be 4-bits wide, but we counter that we 

can get away with fewer (e.g. 2 bits).  Briefly explain why. 
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Question 6:  Running a Program (9 pts) 
 

The stored-program concept revolutionized computing by allowing machines to be multipurpose (i.e. run many 
different programs) instead of specialized or hard-coded. 
 

a) Circle all that apply.  If I decide to write my program in a compiled language instead of an interpreted 
language, then I would expect the program to be: 

 
 FASTER SLOWER LARGER SMALLER PORTABLE NON-PORTABLE 
 
 

b) Which stage in CALL actually creates the Code section in memory? 
 

 
 

c) Which stage in CALL allows the reuse of other people’s code? 
 

 
 

d) What information in an object file allows for the displacement of instructions in the Code section of 
memory when multiple files are combined in the executable? 

 

 
 


