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1.(65) Find the general real solution of the equation u′′′(x)+u(x) = 0. The dependent variable x is real,
−∞ < x < ∞.

Solution

Step 1. Basis of solutions.

Because the equation is linear and has constant coefficients, it admits the solution u = epx (constant p to
be determined). By substitution, we find that epx satisfies the differential equation if

p3 = −1. (1.1)

Because (1.1) has 3 distinct roots, the differential equation has 3 linearly independent exponential solutions.

To solve (1.1), let p = reiφ, r real and non–negative. Then

p3 =r3e3iφ (by Lect.3, Eq.3)

=r3{cos 3φ+ i sin 3φ} (Euler formula, Lect.4,Eq.12.)
(1.2)

Substituting (1.2) into (1.1), we obtain
r3e3iφ = −1. (1.3)

Taking the magnitude of both sides, and using |eiφ| = 1 (φ real), we find that r = 1. Consequently,

e3iφ = −1, ⇒ cos 3φ+ i sin 3φ = −1. (1.4a, b)

Equating real and imaginary parts, we obtain

cos 3φ = −1 ⇒ 3φ = π, 3π, 5π, . . . (1.5a)

sin 3φ = 0 (1.5b)

Values given by (1.5a) also satisfy (1.5b); so φ = π/3, π, 5π/3, all further values (7π/3, . . . are equivalent
to one of those three).

Using cos π
3 = 1

2 , sin
π
3 =

√
3
2 , we obtain 3 roots:

p1 = −1, (1.6a)

p2,3 = e±iπ/3,= 1
2 ± i

√
3
2 ; (1.6b, c)

These roots lie on the unit circle in the complex plane; they trisect the unit circle. Because Eq.(1.1) has
real coefficients, roots p2,3 are complex conjugates.

Step 2. Real solution.

Method 1. Let c0, c1 be, respectively, a real constant and a complex constant. Then the general real
solution of the differential equation is

u(x) = c0e
−x + ex/2{c1eix

√
3/2 + c̄1e

−ix
√
3/2}. (1.7a)

(As in the class notes, Lect.3, c̄1 denotes the complex conjugate of c1.)

Method 2. Form a basis of real solutions; then superpose using real constants c0, c2, c3. From the func-

tions ex/2e±ix
√
3/2, form the linearly independent real functions ex/2 cosx

√
3
2 , ex/2 sinx

√
3
2 . The general

real solution is

u(x) = c0e
−x + ex/2{c2 cosx

√
3

2
+ c3 sinx

√
3

2
}. (1.7b)

Equations (1.7a) and (1.7b) are equivalent: c2 = 2Re c1, and c3 = −2 Im c1.
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2.(65) For 0 < x < 1, f(x) = 1. That function is extended from this interval into the domain −∞ < x < ∞
according to two different rules. For each case, sketch the extended function. Then calculate its Fourier
series.

(a) The extended function has period 2, and is an even function of x.

(b) The extended function has period 2, and is an odd function of x.

Given. The Fourier series of a function G(x) with period 2p is

a0
2

+
∞
∑

n=1

{

an cos
nπx

p
+ bn sin

nπx

p

}

; an =
1

p

∫ d+2p

d

G(x) cos
nπx

p
dx, bn =

1

p

∫ d+2p

d

G(x) sin
nπx

p
dx.

Note. If, in either case (a) or (b), you can see the correct answer from your sketch, you need not provide
a calculation; you may simply state the answer with the appropriate explanation.

0 1−1−2−3

basic 

period 2

(a)

0 1−1−2−3

basic 

period 2

(b)

Solution nn Figs.(a) and (b) show, respectively, the even extension and the odd extension.

For case (a), the extended function is equal to unity everywhere; because its average over a period is equal
to unity, a0 = 2 and all other Fourier coefficients vanish. The Fourier cosine half–range expansion of
f(x) = 1 (0 < x < 1) is, therefore

1 = 1. (2.1)

For case (b),the extended function is a square wave. Because the extended function is odd with period 2,
the coefficients an = 0. To calculate bn, we set the period 2p = 2 so p = 1 and choose d = −1. So

bn =

∫ 1

−1

fodd(x) sinnπx dx,

=2

∫ 1

0

sinnπx dx

=
2

nπ
[− cosnπx]10

So

bn =

{

0 if n = 2k
4

π(2k+1) if n = 2k + 1

The Fourier sine half–range expansion of f(x) = 1 (0 < x < 1) is, therefore,

1 =
4

π

∞
∑

k=0

1

2k + 1
sin(2k + 1)πx. (2.2)
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3.(70) For 0 < x < 1 and 0 < t < ∞, T (x, t) satisfies

∂T

∂t
=

∂2T

∂x2
. (3.1a)

At x = 0 and at x = 1, T = 0. (3.1b, c)

At t = 0, and for 0 < x < 1, T =
4

π2

∞
∑

k=0

(−1)k

(2k + 1)2
sin(2k + 1)πx. (3.1d)

Using separation of variables and superposition, find T (x, t).

Note. If, based on physical reasoning, you make assumptions about the separation constant, you must
explain briefly your reasoning. But you are not asked to prove analytically that the separation constant
is real; do not waste time.

Solution

Step 1. Basis of solutions. Substituting T (x, t) = A(t)X(x) into (3.1a), then separating variables, we
obtain

Ȧ

A
=

X ′′

X
. (3.2)

Because the left side of (3.2) contains only functions of t, but the right hand side contains only functions
of x, each side must be constant.

Because we expect heat conduction to eliminate temperature differences, we denote the separation constant
by −λ, and expect λ to be a positive real number. (As stressed in class, λ is determined by the solution of
the following eigenvalue problem; representing the constant in the form −λ is a notational convenience.)

With that choice of notation, λ and X are determined by the solution of the eigenvalue problem: for
0 < x < 1,

X ′′(x) + λX(x) = 0. (3.3a)

X(0) = 0 = X(1). (3.3b, c)

The general solution of (3.3a) is

X = c0 cosx
√
λ+ c1 sinx

√
λ

Because sin 0 = 0, cos 0 = 1, boundary condition (3.3b) requires c0 = 1. Because c1 6= 0, boundary
condition (3.3c) requires

sin
√
λ = 0. (3.4)

From Lect.4-12, the only zeros of sin z lie along the real axis: so
√
λ = nπ, n = 1, 2, 3 . . .. The solution of

the eigenvalue problem (3.3) is, therefore,

X = sinnπx, λ = n2π2. (3.5)

A now satisfies the equation Ȧ + n2π2A = 0, so A = e−n2π2t. The basis of separable solutions of (3.1a)
and boundary conditions (3.1b,c) is, therefore,

Tn(x, t) = e−n2π2t sinnπx. (3.6)

Step 2. Fitting initial conditions (3.1d).
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By the principle of superposition, the general expression satisfying (3.1a), (3.1b) and (3.1c) is

T (x, t) =

∞
∑

n=1

bne
−n2π2t sinnπx. (3.7)

Setting t = 0 in (3.7), and equating to the initial condition (3.1d), we obtain

∞
∑

n=1

bn sinnπx = T =
4

π2

∞
∑

k=0

(−1)k

(2k + 1)2
sin(2k + 1)πx. (3.8)

On the right hand side of (3.8), the k = 0 term is proportional to sinπx; therefore, that series defines the
odd periodic extension of the initial conditions holding on 0 < x < 1. On the left side of (3.8), n = 1
term is also proportional to sinπx; so, that series also defines the odd periodic extension of the initial
conditions. The coefficients in the Fourier series can, therefore, be equated:

bn =

{

0 for n = 2k,
4
π2

(−1)k

(2k+1)2 for n = 2k + 1
(3.9)

Substituting (3.9) into (3.7), we obtain the solution:

T (x, t) =
4

π2

∞
∑

k=0

(−1)k

(2k + 1)2
e−(2k+1)2π2t sin(2k + 1)πx. (3.10)

Note. Not part of the test: the Fourier series given for the initial condition corresponds to

T (x, 0) =

{

x for 0 < x < 1
2 ,

1− x for 1
2 < x < 1.

END
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