
PHYSICS 7B, Lecture  3 – Spring 2015 

Final exam, C. Bordel 

Tuesday, May 12, 2015 

8-11 am 
 

Make sure you show all your work and justify your answers  

in order to get full credit. 

 

Problem 1: Thermodynamic process (20 points) 
n moles of a diatomic ideal gas undergoes a reversible thermodynamic process 
from temperature and volume (T1,V1) to temperature and volume (T2,V2), with 
V2>V1, following the curve T/V2=const. You may assume that the 2 temperatures 
are in the range [100-1000 K]. 
 
a) Sketch the corresponding path on a P-V diagram. Is this process one of the 4 
thermodynamic processes you know? Justify.  
b) Calculate the work done by the gas and represent it graphically on the P-V 
diagram.  
c) Calculate the change in internal energy and the heat gained by the gas. 
d) Calculate the change in entropy of the gas. Hint: the first law of 
thermodynamics might be useful! 
 

 

Problem 2: Electric potential (20 points) 
We consider two infinite and hollow coaxial cylinders of radii R1 and R2 (R1 < R2) 

carrying uniform electric charges per unit length, - and +, respectively (see 
Fig.1). 

a) Determine the difference in electric potential between the 2 cylindrical shells. 
b) Draw some electric field lines and equipotential surfaces resulting from this 
charge distribution. Justify. 
c)  Describe the trajectory of an electron leaving the inner shell with zero velocity 
and moving towards the outer shell. Determine, in terms of the electric potentials 
V1 and V2 of the two shells, its final speed when it strikes the outer shell. 
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Problem 3: DC circuit (20 points) 
A Wheatstone bridge is a type of "bridge circuit" used to make measurements of 
resistance. The unknown resistance to be measured, Rx, is placed in the circuit 
with accurately known resistances R1, R2, and R3, as shown in Fig. 2. One of 
these, R3, is a variable resistor which is adjusted so that when the switch is 
closed momentarily, the ammeter A shows zero current flow. 
 
Determine Rx in terms of R1, R2, and R3. 
 

 
 

Figure 2 

 

 

Problem 4: Magnetic field (20 points) 
 

A single piece of wire carrying current I is bent so it includes a circular loop of 
radius a, and a long linear section of length L>>a, as shown in Fig. 3. 

Determine the magnitude and direction of the magnetic field created at the loop 
center. 
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Problem 5: Hall effect (20 points) 
A Hall probe used to measure magnetic field strengths consists of a rectangular 
slab of material with free-electron density n, width w and thickness t, carrying a 
current I along its length b. The slab is immersed in a magnetic field of magnitude 
B oriented perpendicular to its large rectangular face, as shown in Fig.4.  
The probe's magnetic sensitivity is defined as KH=E/IB, where E is the magnitude 

of the Hall voltage.  
 
a) Describe the origin of the Hall effect and explain, based on the geometry of the 
set-up, between which 2 sides of the slab the Hall voltage can be measured. 
b) Calculate KH in terms of the material's characteristics. 
c) As possible candidates for the material used in a Hall probe, consider a typical 
metal (n≈1029/m3) and a semiconductor (n≈1022/m3). Which one would be the 
best choice to maximize the probe's sensitivity and why? 
d) Assuming that the free charges responsible for the electric conduction are 
electrons, of electric charge -e, which side of the slab has the higher potential? 
Explain. 
 

 
 

Figure 4 
 

Problem 6: Electromagnetic induction (20 points) 

A uniform horizontal magnetic field of magnitude B exists above a level defined 
to be y = 0. Below y = 0 , the field abruptly becomes zero, as shown in Fig.5. 
A square loop of side length a is made of a metallic wire of mass m, resistivity ρ, 

and diameter d<< a. The loop is held in a vertical plane with its lower horizontal 

side at y = 0. Initially at rest, it is then allowed to fall under gravity, with its plane 
perpendicular to the direction of the magnetic field. 
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Figure 5 

 

a) Without any calculation, predict the direction of the induced current in the loop. 
b) Calculate the induced emf and induced current as a function of the 
instantaneous speed v. 
c) Determine the terminal speed vT achieved by the loop before its upper 
horizontal side exits the field. 

 

Problem 7: Inductance, LR circuit (20 points) 
At time t=0, the switch of the circuit shown in Figure 6 is closed in order to 
connect the battery to the rest of circuit. 
a) Calculate the equivalent inductance Leq of the three inductors (L1, L2, L3). 
Ignore any mutual inductance.  
b) Establish the differential equation satisfied by the current I(t). 
c) How many time constants does it take for the potential difference across the 
resistor to reach 90 % of its maximum value?  

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 6 
 

a 

a 

R 

V0 

S 

L1 

L2 

L3 



~τ = ~r × ~F

∆l = αl0∆T

∆V = βV0∆T

PV = NkT = nRT

1

2
mv2 =

3

2
kT

fMaxwell(v) = 4πN

(
m

2πkT

)3/2

v2e−
mv2

2kT

E =
d

2
nRT

Q = mc∆T = nC∆T

Q = mL (For a phase transition)

dE = −PdV + dQ

W =

∫
PdV

CP − CV = R = NAk

PV γ = const. (For an adiabatic process)

γ =
CP
CV

=
d+ 2

d

CV =
d

2
R

dQ

dt
= −kAdT

dx

e =
Wnet

Qin

eideal = 1− TL
TH

dQ = TdS

~F =
Q1Q2

4πε0r2
r̂

~F = Q~E

~E =

∫
dQ

4πε0r2
r̂

ρ =
dQ

dV

σ =
dQ

dA

λ =
dQ

dl

~p = Q~d

~τ = ~p× ~E

U = −~p · ~E

ΦE =

∫
~E · d ~A

∮
~E · d ~A =

Qencl
ε0

∆U = Q∆V

V (b)− V (a) = −
∫ b

a

~E · d~l

V =

∫
dQ

4πε0r

~E = −~∇V

Q = CV

Ceq = C1 + C2 (In parallel)

1

Ceq
=

1

C1
+

1

C2
(In series)

ε = κε0

U =
Q2

2C

U =

∫
ε0
2
| ~E|2dV

I =
dQ

dt

∆V = IR

R = ρ
l

A

ρ(T ) = ρ(T0)(1 + α(T − T0))

P = IV

I =

∫
~j · d ~A

~j = nQ~vd =
~E

ρ

Req = R1 +R2 (In series)

1

Req
=

1

R1
+

1

R2
(In parallel)



∑
junc.

I = 0 (junction rule)

∑
loop

V = 0 (loop rule)

d~Fm = Id~l × ~B

~F = q( ~E + ~v × ~B)

~µ = NI ~A

~τ = ~µ× ~B

U = −~µ · ~B

∮
~B · d~l = µ0Iencl

~B =
µ0

4π

∫
Id~l × r̂
r2

ΦB =

∫
~B · d ~A

VS
VP

=
NS
NP

=
IP
IS

E =

∮
~E · d~l = −dΦB

dt

E = −LdI
dt

M = N1
Φ1

I2
= N2

Φ2

I1

L = N
ΦB
I

U =
1

2
LI2

U =

∫
1

2µ0
| ~B|2dV

g(v) =

∫ ∞
0

g(v)
f(v)

N
dv

(f(v) a speed distribution)

~∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

∂f

∂z
ẑ
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