PHYSICS 7B, Lecture 3 – Spring 2015 Final exam, C. Bordel Tuesday, May 12, 2015 8-11 am

Make sure you show all your work and justify your answers in order to get full credit.

Problem 1: Thermodynamic process (20 points)

n moles of a diatomic ideal gas undergoes a reversible thermodynamic process from temperature and volume (T_1, V_1) to temperature and volume (T_2, V_2) , with $V_2 > V_1$, following the curve $T/V^2 = const$. You may assume that the 2 temperatures are in the range [100-1000 K].

- a) Sketch the corresponding path on a P-V diagram. Is this process one of the 4 thermodynamic processes you know? Justify.
- b) Calculate the work done by the gas and represent it graphically on the P-V diagram.
- c) Calculate the change in internal energy and the heat gained by the gas.
- d) Calculate the change in entropy of the gas. <u>Hint:</u> the first law of thermodynamics might be useful!

Problem 2: Electric potential (20 points)

We consider two infinite and hollow coaxial cylinders of radii R_1 and R_2 ($R_1 < R_2$) carrying uniform electric charges per unit length, $-\lambda$ and $+\lambda$, respectively (see Fig.1).

- a) Determine the difference in electric potential between the 2 cylindrical shells.
- b) Draw some electric field lines and equipotential surfaces resulting from this charge distribution. Justify.
- c) Describe the trajectory of an electron leaving the inner shell with zero velocity and moving towards the outer shell. Determine, in terms of the electric potentials V_1 and V_2 of the two shells, its final speed when it strikes the outer shell.

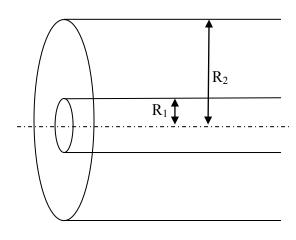


Figure 1

Problem 3: DC circuit (20 points)

A Wheatstone bridge is a type of "bridge circuit" used to make measurements of resistance. The unknown resistance to be measured, R_x , is placed in the circuit with accurately known resistances R_1 , R_2 , and R_3 , as shown in Fig. 2. One of these, R_3 , is a variable resistor which is adjusted so that when the switch is closed momentarily, the ammeter A shows zero current flow.

Determine R_x in terms of R_1 , R_2 , and R_3 .

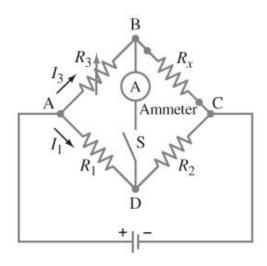


Figure 2

Problem 4: Magnetic field (20 points)

A single piece of wire carrying current I is bent so it includes a circular loop of radius a, and a long linear section of length L>>a, as shown in Fig. 3. Determine the magnitude and direction of the magnetic field created at the loop center.

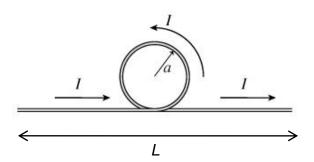


Figure 3

Problem 5: Hall effect (20 points)

A Hall probe used to measure magnetic field strengths consists of a rectangular slab of material with free-electron density n, width w and thickness t, carrying a current t along its length t. The slab is immersed in a magnetic field of magnitude t oriented perpendicular to its large rectangular face, as shown in Fig.4.

The probe's magnetic sensitivity is defined as $K_H = \mathcal{E}/IB$, where \mathcal{E} is the magnitude of the Hall voltage.

- a) Describe the origin of the Hall effect and explain, based on the geometry of the set-up, between which 2 sides of the slab the Hall voltage can be measured.
- b) Calculate K_H in terms of the material's characteristics.
- c) As possible candidates for the material used in a Hall probe, consider a typical metal ($n\approx10^{29}/\text{m}^3$) and a semiconductor ($n\approx10^{22}/\text{m}^3$). Which one would be the best choice to maximize the probe's sensitivity and why?
- d) Assuming that the free charges responsible for the electric conduction are electrons, of electric charge -e, which side of the slab has the higher potential? Explain.

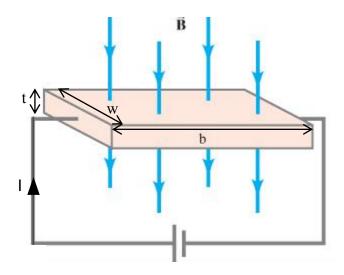
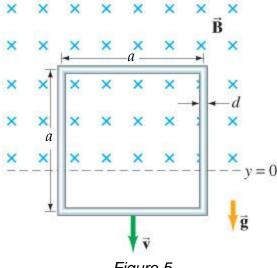



Figure 4

Problem 6: Electromagnetic induction (20 points)

A uniform horizontal magnetic field of magnitude B exists above a level defined to be y = 0. Below y = 0, the field abruptly becomes zero, as shown in Fig.5. A square loop of side length a is made of a metallic wire of mass m, resistivity ρ , and diameter d << a. The loop is held in a vertical plane with its lower horizontal side at y = 0. Initially at rest, it is then allowed to fall under gravity, with its plane perpendicular to the direction of the magnetic field.

- Figure 5
- a) Without any calculation, predict the direction of the induced current in the loop.
- b) Calculate the induced *emf* and induced current as a function of the instantaneous speed *v*.
- c) Determine the terminal speed v_T achieved by the loop before its upper horizontal side exits the field.

Problem 7: Inductance, LR circuit (20 points)

At time t=0, the switch of the circuit shown in Figure 6 is closed in order to connect the battery to the rest of circuit.

- a) Calculate the equivalent inductance L_{eq} of the three inductors (L_1 , L_2 , L_3). Ignore any mutual inductance.
- b) Establish the differential equation satisfied by the current I(t).
- c) How many time constants does it take for the potential difference across the resistor to reach 90 % of its maximum value?

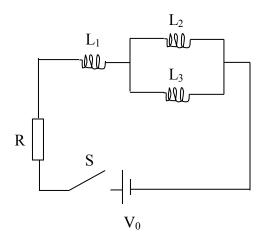


Figure 6

$$\vec{\tau} = \vec{r} \times \vec{F}$$

$$\Delta l = \alpha l_0 \Delta T$$

$$\Delta V = \beta V_0 \Delta T$$

$$PV = NkT = nRT$$

$$\frac{1}{2}m\overline{v^2} = \frac{3}{2}kT$$

$$f_{Maxwell}(v) = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}}$$

$$E = \frac{d}{2} nRT$$

$$Q = mc\Delta T = nC\Delta T$$

Q = mL (For a phase transition)

$$dE = -PdV + dQ$$

$$W = \int PdV$$

$$C_P - C_V = R = N_A k$$

 $PV^{\gamma} = \text{const.}$ (For an adiabatic process)

$$\gamma = \frac{C_P}{C_V} = \frac{d+2}{d}$$

$$C_V = \frac{d}{2}R$$

$$\frac{dQ}{dt} = -kA\frac{dT}{dx}$$

$$e = \frac{W_{net}}{Q_{in}}$$

$$e_{ideal} = 1 - \frac{T_L}{T_H}$$

$$dQ = TdS$$

$$\vec{F} = \frac{Q_1 Q_2}{4\pi\epsilon_0 r^2} \hat{r}$$

$$\vec{F} = Q\vec{E}$$

$$\vec{E} = \int \frac{dQ}{4\pi\epsilon_0 r^2} \hat{r}$$

$$\rho = \frac{dQ}{dV}$$

$$\sigma = \frac{dQ}{dA}$$

$$\lambda = \frac{dQ}{dl}$$

$$\vec{p} = Q\vec{d}$$

$$\vec{\tau} = \vec{p} \times \vec{E}$$

$$U = -\vec{p} \cdot \vec{E}$$

$$\Phi_E = \int \vec{E} \cdot d\vec{A}$$

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{encl}}{\epsilon_0}$$

$$\Delta U = Q\Delta V$$

$$V(b) - V(a) = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

$$V = \int \frac{dQ}{4\pi\epsilon_0 r}$$

$$\vec{E} = -\vec{\nabla}V$$

$$Q = CV$$

$$C_{eq} = C_1 + C_2$$
 (In parallel)

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$
 (In series)

$$\epsilon = \kappa \epsilon_0$$

$$U = \frac{Q^2}{2C}$$

$$U = \int \frac{\epsilon_0}{2} |\vec{E}|^2 dV$$

$$I = \frac{dQ}{dt}$$

$$\Delta V = IR$$

$$R = \rho \frac{l}{\Lambda}$$

$$\rho(T) = \rho(T_0)(1 + \alpha(T - T_0))$$

$$P = IV$$

$$I = \int \vec{j} \cdot d\vec{A}$$

$$\vec{j} = nQ\vec{v_d} = \frac{\vec{E}}{\rho}$$

$$R_{eq} = R_1 + R_2$$
 (In series)

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \text{ (In parallel)}$$

$$\sum_{\rm junc.} I = 0 \ \ ({\rm junction\ rule})$$

$$\sum_{\text{loop}} V = 0 \text{ (loop rule)}$$

$$d\vec{F}_m = Id\vec{l} \times \vec{B}$$

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

$$\vec{\mu} = N I \vec{A}$$

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

$$U = -\vec{\mu} \cdot \vec{B}$$

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{encl}$$

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{Id\vec{l} \times \hat{r}}{r^2}$$

$$\Phi_B = \int \vec{B} \cdot d\vec{A}$$

$$\frac{V_S}{V_P} = \frac{N_S}{N_P} = \frac{I_P}{I_S}$$

$$\mathcal{E} = \oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

$$\mathcal{E} = -L\frac{dI}{dt}$$

$$M = N_1 \frac{\Phi_1}{I_2} = N_2 \frac{\Phi_2}{I_1}$$

$$L = N \frac{\Phi_B}{I}$$

$$U = \frac{1}{2}LI^2$$

$$U=\int\frac{1}{2\mu_0}|\vec{B}|^2dV$$

$$\overline{g(v)} = \int_0^\infty g(v) \frac{f(v)}{N} dv$$

$$(f(v) \text{ a speed distribution})$$

$$\vec{\nabla}f = \frac{\partial f}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\hat{\theta} + \frac{\partial f}{\partial z}\hat{z}$$

$$d\vec{l} = dr\hat{r} + rd\theta\hat{\theta} + dz\hat{z}$$
(Cylindrical Coordinates)

$$\vec{\nabla} f = \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{1}{r \sin(\theta)} \frac{\partial f}{\partial \phi} \hat{\phi}$$

$$d\vec{l} = dr \hat{r} + r d\theta \hat{\theta} + r \sin(\theta) d\phi \hat{\phi}$$
(Spherical Coordinates)

$$y(t) = \frac{B}{A}(1 - e^{-At}) + y(0)e^{-At}$$
solves
$$\frac{dy}{dt} = -Ay + B$$

$$y(t) = y_{max} \cos(\sqrt{A}t + \delta)$$

solves $\frac{d^2y}{dt^2} = -Ay$

$$\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$$

$$\int_0^\infty x^{2n} e^{-ax^2} dx = \frac{(2n)!}{n!2^{2n+1}} \sqrt{\frac{\pi}{a^{2n+1}}}$$

$$\int_0^\infty x^{2n+1} e^{-ax^2} dx = \frac{n!}{2a^{n+1}}$$

$$\int_0^\pi \sin^3(x) dx = \frac{4}{3}$$

$$\int (1+x^2)^{-1/2} dx = \ln(x+\sqrt{1+x^2})$$

$$\int (1+x^2)^{-1}dx = \arctan(x)$$

$$\int (1+x^2)^{-3/2} dx = \frac{x}{\sqrt{1+x^2}}$$

$$\int \frac{x}{1+x^2} dx = \frac{1}{2} \ln(1+x^2)$$

$$\int \frac{1}{\cos(x)} dx = \ln\left(\left|\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right|\right)$$

$$\int \frac{1}{\sin(x)} dx = \ln\left(\left|\tan\left(\frac{x}{2}\right)\right|\right)$$

$$\int \sin(x)dx = -\cos(x)$$

$$\int \cos(x)dx = \sin(x)$$

$$\int \frac{dx}{x} = \ln(x)$$

$$\sin(x) \approx x$$

$$\cos(x) \approx 1 - \frac{x^2}{2}$$

$$e^x \approx 1 + x + \frac{x^2}{2}$$

$$(1+x)^{\alpha} \approx 1 + \alpha x + \frac{(\alpha-1)\alpha}{2}x^2$$

$$\ln(1+x) \approx x - \frac{x^2}{2}$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = 2\cos^2(x) - 1$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$1 + \cot^2(x) = \csc^2(x)$$

$$1 + \tan^2(x) = \sec^2(x)$$