
CS 61A Midterm #2

Your name

TA’s name Discussion section number

A random five-digit number:

Circle the last two letters of your login (cs61a-xx)

a b c d e f g h i j k l m n o p q r s t u v w x y z 1 2 3

a b c d e f g h i j k l m n o p q r s t u v w x y z

This exam is worth 40 points, or about 13% of your total course grade. The exam contains
seven substantive questions, plus the following:

Question 0 (1 point): Fill out this front page correctly and correctly copy your random
five-digit number to the top of each of the following pages. (This is to make sure the pages
of your exam stay together even if the staple comes out.)

This booklet contains ten numbered pages including the cover page. Put all answers on
these pages, please; don’t hand in stray pieces of paper. This is an open book exam.

When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type.

Our expectation is that many of you will not complete one or two of these questions. If
you find a question especially difficult, leave it for later; start with the ones you find easier.

If you want to use procedures defined in the book or reader as part of your
solution to a programming problem, you must cite the page number on which
it is defined so we know what you think it does.

READ AND SIGN THIS:

I certify that my answers to this exam are all my own
work, and that I have not discussed the exam questions or
answers with anyone prior to taking this exam.

If I am taking this exam early, I certify that I shall not
discuss the exam questions or answers with anyone until
after the scheduled exam time.

0 /1

1-2 /6

3 /5

4 /5

5 /8

6 /11

7 /4

total /40
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Question 1 (2 points):

What will Scheme print in response to the following expressions? If the expression pro-
duces an error message, you may just write “error”; you don’t have to provide the exact
text of the message. If the value of an expression is a procedure, just write “procedure”;
you don’t have to show the form in which Scheme prints procedures.

> (filter (not number?) ’(3 hello (3 . 2) #t))

> (load "~cs61a/lib/scheme1.scm")
> (apply-1 word ’(a b c d))

Question 2 (4 points):

What will Scheme print in response to the following expressions? Also, draw the box-
and-pointer diagrams for each result.

> (map list ’(1 (2) 3))

> (map (lambda (x) (if (list? x) (car x) (* x x)))
’(1 (3 4) 5 ((6 7) 8)) )
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Your five-digit number:

Question 3 (5 points):

What are the domain and range of the following procedures? Be specific, e.g. ‘list’, ‘binary
tree’, ‘procedure’, ‘Tree’, ‘number’.

deep-map Domain: and

Range:

forest-map Domain: and

Range:

children Domain: Range:

left-branch Domain: Range:

segments->painter
Domain: Range:
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Question 4 (5 points):

We want to make the calculator program data-directed. It will use the get/put table to
store all operations it knows how to perform. We can add operations like this:

> (put ’calc ’+ (lambda (args) (accumulate + 0 args)))
okay
> (put ’calc ’- (lambda (args)

(cond ((null? args) (error "Calc: no args to -"))
((= (length args) 1) (- (car args)))
(else (- (car args)

(accumulate + 0 (cdr args)))) )))
okay
> (put ’calc ’magic (lambda (args) (accumulate word "" args)))
okay
> (calc)
calc: (+ 2 (magic 3 4))
36

Here is the code for the calculator program:

1. (define (calc-eval exp)
2. (cond ((number? exp) exp)
3. ((list? exp) (calc-apply (car exp) (map calc-eval (cdr exp))))
4. (else (error "Calc: bad expression:" exp))))
5.
6. (define (calc-apply fn args)
7. (cond ((eq? fn ’+) (accumulate + 0 args))
8. ((eq? fn ’-)
9. (cond ((null? args) (error "Calc: no args to -"))
10. ((= (length args) 1) (- (car args)))
11. (else (- (car args) (accumulate + 0 (cdr args))))))
12. ((eq? fn ’*) (accumulate * 1 args))
13. ((eq? fn ’/)
14. (cond ((null? args) (error "Calc: no args to /"))
15. ((= (length args) 1) (/ (car args)))
16. (else (/ (car args) (accumulate * 1 (cdr args))))))
17. (else (error "Calc: bad operator:" fn))))

Question 4 continues on the next page.
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Your five-digit number:

Question 4 continued:

Change calc-eval and/or calc-apply to make this work. You do not need to worry
about error handling.

For this problem, use the sections below to show which lines from the program on the
previous page you are changing. If you want to replace a single line, write the same
number in both spaces. You are not required to use all three sections.

Replace lines through (inclusive) with the following:

Replace lines through (inclusive) with the following:

Replace lines through (inclusive) with the following:
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Question 5 (8 points):

A trie is a special Tree used to store sets of words, like a dictionary. Each datum in the
Tree is a “trie entry” defined by the following ADT:

(define (make-trie-entry letter is-end-of-word)
(cons letter is-end-of-word) )

(define (letter trie-entry)
(car trie-entry) )

(define (end-of-word? trie-entry)
(cdr trie-entry) )

Words in the trie are made up of the letters that stretch from the root to an “end-of-word”
node. The trie below is for words starting with t. A node that is an end-of-word is shown
below underlined and capitalized. (Note that end-of-word nodes are not necessarily leaves.)

t
/|\
/ | \
/ | \

O i a
/ | \
M M P

| / \
i E S
|
D

The words in this trie are (to tom tim timid tap tape taps). The order is not impor-
tant. By our definition, ta and timi are not in the trie, since the last letter is not part of
an “end of word” entry. ape and mid are also not part of the trie, since they do not start
at the root of the Tree.

Question 5 continues on the next page:
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Your five-digit number:

Question 5 continued:

Write a procedure all-words that takes a trie and returns a list of all words in that trie
(in any order).

Hint: One solution (though not the only one) requires you to keep track of the part of the
word you’ve seen so far. You can use helper procedures for this!

(define (all-words trie)
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Question 6 (11 points):

A “chat bot” is a little program that sits online in a chat room and does something
useful...or not. There are several kinds of chat bots. Some bots keep track of statistics, like
how many people are in the chat room at certain hours. Others might provide definitions
when asked. Still others might just insult whoever sends them a message.

We’re going to write our own chat bots using object-oriented programming.

(a) Write a chat-bot class. Chat bots are given a name when they are created, and have a
greet method and a respond method. The greet method returns a sentence introducing
the chat bot, as shown below. The respond method takes an incoming chat message (a
sentence). A basic chat bot’s respond method should just return an empty sentence, no
matter what the input is.

For this problem, make your answer as short as possible.

> (ask first-bot ’greet)
(hi my name is tommy)
> (ask first-bot ’respond ’(tommy can you hear me))
()
> (ask second-bot ’greet)
(hi my name is sally)
> (ask second-bot ’name)
sally

Question 6 continues on the next page.
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Your five-digit number:

Question 6 continued:

(b) Write a grumpy-bot class. A grumpy-bot is just like a chat-bot, but has an extra
instantiation variable that says how many chat messages it can tolerate. At first, a grumpy-
bot should return (dont talk to me) from its respond method. However, after the
grumpy-bot has respond-ed to as many chat messages as its tolerance, it should always
return the empty sentence from both respond and greet.

For this problem, do not unnecessarily repeat code.

; MARVIN is a GRUMPY-BOT with a tolerance of 2.
> (ask marvin ’greet)
(hi my name is marvin)
> (ask marvin ’respond ’(where is ford?))
(dont talk to me)
> (ask marvin ’respond ’(where is trillian?))
(dont talk to me)
> (ask marvin ’greet)
()
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Question 7 (4 points):

Louis Reasoner wants to write deep-squares which takes a deep list of numbers and
returns a list with each value squared. He writes the following procedure:

1. (define (deep-squares lol)
2. (cond ((null? lol) ’())
3. ((list? (car lol))
4. (cons (map square (car lol))
5. (deep-squares (cdr lol)) ))
6. (else (cons (square (car lol))
7. (deep-squares (cdr lol)) ))))

For which of the following inputs will deep-squares not work as intended?

(deep-squares ’()) Works: Broken:

(deep-squares ’(1 (2 3) 4)) Works: Broken:

(deep-squares ’(1 (2 3) ((4)) 5)) Works: Broken:

Which line contains the bug?
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