
CS61BL: Data Structures & Programming Methodology Summer 2014

Final Exam Solutions
1 Sometimes Sort of Sorted (8 points)
Let n be some large integer, k < log2 n. For each of the input arrays described below, explain which
sorting algorithm you would use to sort the input array the fastest and why you chose this sorting
algorithm. Make sure to state any assumptions you make about the implementation of your chosen
sorting algorithm. Also specify the big-Oh running time for each of your algorithms in terms of k
and n. Your big-Oh bounds should be simplified and as tight as possible.

(a) Input: An array of n Comparable objects in completely random order

Sorts: Quicksort, merge sort, heap sort, tree sort
Runtime: O(n logn)
Explanation: Merge sort and heap sort are always O(n logn). For quicksort, we can easily
choose a good pivot for randomly ordered inputs. For tree sort, the resulting tree will be fairly
balanced in the average case.

Comments: You needed to use a comparison-based sort because input contains Comparable
objects. Bubble, insertion, and insertion sort are inefficient compared to the four listed above.
Runtime should not include k.

(b) Input: An array of n Comparable objects that is sorted except for k randomly located elements
that are out of place (that is, the list without these k elements would be completely sorted)

Sort: Insertion sort
Runtime: O(nk)
Explanation: For the n− k sorted elements, insertion sort only needs 1 comparison to check
that it is in the correct location (larger than the last element in the sorted section). The re-
maining k out-of-place elements could be located anywhere in the sorted section. In the worst
case, they would be inserted at the beginning of the sorted section, which means there are
O(n) comparisons in the worst-case for these k elements. This leads to an overall runtime of
O(nk+n), which simplifies to O(nk).

Comments: It was a common error to say the runtime was O(n) or O(n2). We gave partial
credit for both of these answers. O(n) was incorrect because it underestimated the number of
comparisons required for the out-of-place elements. O(n2) was incorrect because it ignored
the fact that only 1 comparison is needed for already sorted elements.
Also, it is incorrect to equate k with log2 n. It was only given that k < log2 n.

(c) Input: An array of n Comparable objects that is sorted except for k randomly located pairs of
adjacent elements that have been swapped (each element is part of at most one pair).

Sort Option 1: Bubble sort with optimization
Runtime 1: O(n) or O(n+ k)
Explanation 1: It was necessary to mention the optimization for bubble sort, which involves
stopping after a complete iteration of no swaps occurring. In order words, optimized bubble
sort stops once the list is sorted, not after it has run through n iterations for a runtime of O(n2).

CS61BL, Summer 2014, Final Exam Solutions 1

SID:

It takes one iteration of bubble sort to swap the k randomly reversed pairs of adjacent elements
then another iteration before optimized bubble sort stops due to no swaps. If you count each
swap as taking O(1) time, the total runtime is O(2n+ k), which simplifies to O(n).

Sort Option 2: Insertion sort
Runtime 2: O(n) or O(n+ k)
Explanation 2: Insertion sort requires 1 comparison for the n−k sorted elements then requires
2 comparisons for the second element in each of the k pairs. This leads to a runtime of O(n+k),
which simplifies to O(n).

(d) Input: An array of n elements where all of the elements are random ints between 0 and k

Sort Option 1: Counting sort
Runtime 1: O(n) or O(n+ k)
Explanation 1: Counting sort involves initializing an array of size k, then going through n
elements while incrementing numbers in the array. Recovering the sorted list requires going
through k buckets and outputting n numbers. This is a total runtime of O(2n + 2k), which
simplifies to O(n+ k) or O(n).

Comments: Counting sort was the easier sort to explain. Radix sort, explained below, re-
quired a more intricate explanation to prove that it had as efficient a runtime as counting sort.

Sort Option 2: Radix sort
Runtime 2: O(n)
Explanation 2: Radix sort is O((n+b)d), where b is the number of buckets used and d is the
number of digits representing the largest element. (In this case, the largest element was k.)
Because the input array is composed of Java ints, we can say that b is equal to 2 and d is
equal to 32 because Java ints are 32-bits long, and each bit can be a 0 or 1. Thus, because
b and d are constants, the runtime for radix sort on Java ints is O(n).

Comments: We also accepted the answer that b was 10 and d was a constant when simplify-
ing the runtime to O(n) based on Java ints.
While it is true that radix sort runs in O(n logk) because the number k can be represented in
logk bits and b would then be a constant, this runtime did not prove that radix sort was as
efficient of a sort as counting sort. Thus, we only gave partial credit for this runtime.

Sort Option 3: Bucket sort
Runtime 3: O(n) or O(n+ k)
Explanation 3: The correctness of bucket sort as an answer depended heavily on the choice
of buckets (and how many buckets were used, in particular). Solutions that chose k buckets
were quite similar to counting sort and thus had the same runtime as counting sort.

Comments: Solutions that did not explain the choice or number of buckets were docked points
because bucket sort actually refers to any sorting algorithm that involves placing elements in
buckets. Thus, counting sort, radix sort, and even quicksort and merge sort are all categorized
as bucket sorts. Only explanations of bucket sort that were specific about the implementation
received full points.

2

SID:

2 The Unsocial Network (4 points)
(a) For each strongly connected component in the directed graph below, draw a circle around all

of the vertices in that strongly connected component.

Comments: Many students didn’t circle the
strongly connected components that con-
sisted of only a single vertex.

(b) Give a topological sort ordering of the vertices in the following directed acyclic graph (in other
words, give a linearized ordering of the vertices in the graph).

A B C

D E

F G

Potential solution: [A, D, B, F, E, G, C]

Comments: There were many possible solu-
tions to this problem.

3

SID:

3 Balanced Search Trees (7 points)
For each part below, assume that nodes are ordered alphabetically by their letter (i.e. the value of
"A" is less than the value of "B", which is less than the value of "C", etc...)

(a) Draw the splay tree that results after calling find("A") on the splay tree below.

Solution:

E

D

C

B

A

Rotate B and C
right

−→

E

D

B

A C

Rotate A and B
right

−→

E

D

A

B

C

Rotate D and E right

−→
D

A

B

C

E

Rotate A and D right

−→
A

D

B

C

E

(b) Add a "B" node to the AVL tree below by drawing it below. Then draw the tree that results after
the AVL tree balances itself. Show all intermediary steps, if any.

A

C

Solution:

A

C

B

Rotate B and C
right

−→

A

B

C

Rotate B and A
left

−→

B

A C

4

SID:

(c) Draw the 2-3 tree that results after inserting the following elements in the given order:

1 2 3 4 5 6

Solution:

1 Add 2−→ 1 2 Add 3−→ 1 2 3

Bump 3 node up−→ 2

1 3

Add 4 to right
leaf−→

2

1 3 4

Add 5 to right
leaf−→

2

1 3 4 5

Bump 4 node up,
causing 3 node
to become mid-
dle child−→

2 4

1 3 5

Add 6 node to
rightmost leaf−→

2 4

1 3 5 6

(d) Draw the 2-3 tree that results after inserting the following elements in the given order:

4 2 1 3 6 5

Solution:

4 Add 2−→ 2 4 Add 1−→ 1 2 4

Bump 2 node up−→ 2

1 4

Add 3 to right
leaf−→

2

1 3 4

Add 6 to right
leaf−→

2

1 3 4 6

Bump 4 node up,
causing 3 node
to become mid-
dle child−→

2 4

1 3 6

Add 5 node to
rightmost leaf−→

2 4

1 3 5 6

5

SID:

4 Huffman Tree (6 points)
A table of characters and corresponding frequencies is provided below. Next to the table, draw
a valid Huffman encoding tree. Then fill out the codemap table with each character’s encoding
according to your Huffman encoding tree.

Character Frequency

a 5

b 2

c 8

d 7

e 3

f 7

g 1

Draw Huffman encoding tree below:

g b

e

a

c f d

Fill out the codemap below:

Character Encoding

a 001

b 00001

c 01

d 11

e 0001

f 10

g 00000

Comments: There were many possible solution
trees (one is shown above), but only one way to
combine nodes at every step. Thus, any correct
solution can be derived from the tree above by
switching any node’s left and right subtrees.

6

SID:

5 Pair (5 points)
Write a program, Pair.java, that generates the box-and-pointer diagram shown below when
run. Your program should include a class with a main method. In the diagram below, each object’s
static type is labeled next to the corresponding variable name. Each object’s dynamic type is not
shown.

Solution:

public class Pair<T1, T2> {
T1 o1;
T2 o2;

public static void main(String[] args) {
Pair<Integer, String> p1 = new Pair<Integer, String>();
Pair<Pair, Pair> p2 = new Pair<Pair, Pair>();
p1.o1 = new Integer(7);
p1.o2 = "Okay!";
p2.o1 = p2;
p2.o2 = p1;

}
}

Comments: Many students didn’t use generics, and instead made instance variables have static
type Object (we only took off one point for this). Another common mistake was to use p2 before
it was initialized (for example, Pair p2 = new Pair(p1, p2);)

7

SID:

6 Poorly Named Variables (6 points)
1 public class V {
2 private i n t VVVVV;
3
4 public V(i n t VVVV) {
5 VVVVV = VVVV;
6 }
7
8 private i n t VV() {
9 return 0;

10 }
11
12 public double OOOO() {
13 return 0;
14 }
15 }

1 public class O extends V {
2 private i n t OOO;
3 }

For each of the following methods, explain whether the O class would still compile if the method is
added to it. If the O class wouldn’t compile, explain why. The O class may have additional methods
/ constructors. The V class does not.

(a) public O() { }

This would not compile. In a constructor, if there is no explicit call given to a super constructor,
an implicit one is made. Since the implicit call would have been super() and class V does
not have a no-arg constructor, you will get a compile-time error.

Comments: A common error was assuming V had a no-arg constructor. However, the default
no-arg constructor ceases to exist once you define an explicit constructor.

(b) void OO() { OOO = VV(); }

This would not compile. VV is a private method and cannot be called in any class outside of V.

Comments: Some people thought the error was the lack of a privacy keyword (i.e. public,
private, protected). However, lack of a privacy keyword simply means the method has
default privacy protections. default protection means that the method or variable can only
be accessed by code within the same class or package.

(c) public boolean OOOO() { return false; }

This would not compile. Since the method signature was the same (i.e. same name and same
parameters) but the return types were different, Java would be unable to differentiate between
the two. One could have defended that this was either a failed override or a failed overload
depending on how you explained your answer.

Comments: Many people were confused on the terminology of method signature and method
header. A method’s signature includes its name and parameters. A method’s header includes
the privacy modifier and return type in addition to the method signature.

8

SID:

7 Dijkstra Analysis (8 points)
For each part below, all solutions given in terms of big-Oh must be simplified and as tight of an
upper bound as possible. |E| is the number of edges in the graph and |V | is the number of vertices
in the graph.

(a) Recall that Dijkstra’s algorithm finds the shortest paths from some starting vertex s to all other
vertices in the graph. In terms of big-Oh, |E|, and |V |, how many times does each of the
following priority queue operations get called in one complete run of Dijkstra’s algorithm?

i) enqueue: O(|V |)

ii) dequeue: O(|V |)

iii) isEmpty: O(|V |)

iv) containsKey: O(|E|)

v) update (updates a vertex’s priority value in the priority queue): O(|E|)

(b) In lab, we analyzed the running time of Dijkstra’s algorithm using a priority queue implemented
with a binary min-heap. Now let’s use a priority queue implemented with Java’s HashMap that
maps vertices to their priority values. Assuming that the hash map operations put, get, and
remove take constant time, what are the new big-Oh running times (in terms of |E| and |V |) of
a single call to each of the following operations:

i) enqueue: O(1)

ii) dequeue: O(|V |)

iii) isEmpty: O(1)

iv) containsKey: O(1)

v) update: O(1)

Comments: Some students didn’t realize that these were the running times of a single
call to each operation (as opposed to part (a), which asked for how many times each
operation was called). One common mistake was to give the running time of dequeue
as O(1). This was incorrect because in order to dequeue, the entire HashMap needs to
be traversed to find the vertex with the lowest priority value. Another common mistake
was to give the running time of isEmpty as O(|V |). This was incorrect because Java’s
implementation of HashMap (like most implementations) has a variable to keep track of
the size of the HashMap.

9

SID:

(c) With our changes above, what is the new big-Oh running time of Dijkstra’s algorithm (in terms
of |V | and |E|)? Show your work.

Solution: |V | ∗1+ |V | ∗ |V |+ |V | ∗1+ |E| ∗1+ |E| ∗1 = 2∗ |V |+ |V |2 +2∗ |E| ∈O(|V |2 + |E|) ∈O(|V |2)
Multiplying corresponding answers from parts (a) and (b) and summing them gives us an upper
bound on the running time. In this case, this is also a tight bound since dequeue takes time
proportional to the number of keys in the HashMap. The first time we call dequeue there are |V |
keys, then |V |−1 keys, and so on. This gives up a running time of O(|V |2). Finally, since |E| ≤ |V |2
for any graph, O(|V |2 + |E|) ∈ O(|V |2).

10

SID:

8 Buggy Priority Queue (10 points)
Joe Cool is implementing a priority queue with a binary min-heap using an array list (his code is
provided below). However, his pair programming partner tells him that, with this implementation,
calls to dequeue will not always work as intended.

1 import java . u t i l . A r r a y L i s t ;
2
3 public class MyPrior i tyQueue {
4
5 private Ar rayL i s t < In teger > binMinHeap ;
6
7 public MyPrior i tyQueue () {
8 binMinHeap = new Ar rayL i s t < In teger > () ;
9 binMinHeap . add (nul l) ;

10 }
11
12 / / Removes and re tu rns i tem i n p r i o r i t y queue wi th sma l les t p r i o r i t y
13 public I n t ege r dequeue () {
14 In tege r toReturn = binMinHeap . get (1) ;
15 binMinHeap . set (1 , binMinHeap . remove (binMinHeap . s ize () − 1)) ;
16 bubbleDown (1) ;
17 return toReturn ;
18 }
19
20 / / Adds i tem to p r i o r i t y queue
21 public void enqueue (In tege r i tem) {
22 binMinHeap . add (i tem) ;
23 bubbleUp (binMinHeap . s ize () − 1) ;
24 }
25
26 / / Swaps the elements a t index1 and index2 of the b inary min heap
27 private void swap (i n t index1 , i n t index2) {
28 i n t temp = binMinHeap . get (index1) ;
29 binMinHeap . set (index1 , binMinHeap . get (index2)) ;
30 binMinHeap . set (index2 , temp) ;
31 }
32
33 / / Bubbles up the element i n the b inary min heap ar ray l i s t a t given index
34 private void bubbleUp (i n t index) {
35 while (index / 2 > 0 && binMinHeap . get (index) < binMinHeap . get (index / 2)) {
36 swap (index , index / 2) ;
37 index = index / 2 ;
38 }
39 }
40
41 / / Bubbles down the element i n the b inary min heap ar ray l i s t a t given index
42 private void bubbleDown (i n t index) {
43 i n t n = binMinHeap . s ize () ;
44 while (index ∗ 2 < n && binMinHeap . get (index) > binMinHeap . get (index ∗ 2)) {
45 swap (index , index ∗ 2) ;
46 index = index ∗ 2;
47 }
48 }
49 }

11

SID:

(a) Draw an example of a binary min-heap with exactly 5 nodes (either tree or array list form is
fine) such that calling Joe’s dequeue method on your binary min-heap produces an invalid
binary min-heap.

Solution:

1

3

4 5

2

(b) Which lines of code are buggy? lines 44-46 Explain the bug.

When we bubble down, we have to check whether or not our current node is bigger than either
of its children. If it is, then we switch it with the smaller of the two. This code only checks if the
left node is smaller.

(c) Rewrite the lines of code you specified in part b so that his min-heap will work as intended.

Solution: Example 1

while (index * 2 < n) {
int swapIndex = index * 2;
if (index * 2 + 1 < n) {

if (binMinHeap.get(index * 2) > binMinHeap.get(index * 2 + 1)) {
swapIndex = index * 2 + 1;

}
}
if (binMinHeap.get(index) > binMinHeap.get(swapIndex)) {

swap(index, swapIndex);
index = swapIndex;

} else {
break;

}
}

12

SID:

Solution: Example 2

if (index >= n || index * 2 >= n) {
return;

}
int curr = binMinHeap.get(index);
int left = binMinHeap.get(index * 2);
if (index * 2 + 1 == n) { // no right children

if (curr > left) {
swap(index, index * 2);
bubbleDown(index * 2);

}
} else { // two children

int right = binMinHeap.get(index * 2 + 1);
if (left < right) {

if (curr > left) {
swap(index, index * 2);
bubbleDown(index * 2);

}
} else {

if (curr > right) {
swap(index, index * 2 + 1);
bubbleDown(index * 2 + 1);

}
}

}

Comments: The following are common errors:

1. Forgetting to check that index * 2 + 1 < n before binMinHeap.get(index * 2 +
1): There will be an IndexOutOfBoundsException in cases without a right child.

2. Not finding the smaller of the children before comparing with the current element: Many
solutions fell into the same mistake as the prompt’s bubbleDown method.

3. Terminating incorrectly: Solution should stop bubbling down children if there was no swap
with the current element. Some solutions also causes infinite loops.

4. Not dealing with all cases: Solution should deal with cases where there are only one or both
children and when a swap is or is not needed.

13

SID:

9 Every Other (8 points)
1 public class MyLinkedList {
2
3 private ListNode head ;
4
5 public MyLinkedList (ListNode inputHead) {
6 head = inputHead ;
7 }
8
9 public MyLinkedList (Object i tem) {

10 head = new ListNode (i tem) ;
11 }
12
13 private class ListNode {
14 private Object i tem ;
15 private ListNode next ;
16
17 public ListNode (Object i npu t I tem) {
18 th is (input I tem , nul l) ;
19 }
20
21 public ListNode (Object input I tem , ListNode next) {
22 th is . i tem = inpu t I tem ;
23 th is . next = next ;
24 }
25 / / There may be other methods not shown here
26 }
27 / / There may be other methods not shown here
28 }

On the next page, write an evenOdd method in the MyLinkedList class above that destructively
sets the linked list to contain every other linked list node of the original linked list, starting with the
first node. Your method must also return a linked list that contains every other linked list node of
the original linked list, starting with the second node.

Your method should work destructively and should not create any new ListNode objects. If a
MyLinkedList contains zero elements or only one element, a call to evenOdd should return
null. The last ListNode of each MyLinkedList has it’s next instance variable set to null.

Example: If a MyLinkedList initially contains the elements [5, 2, 3, 1, 4], then a call to evenOdd
should return a MyLinkedList with the elements [2, 1], and after the call, the original
MyLinkedList should contain the elements [5, 3, 4]

14

SID:

Solution:

public MyLinkedList evenOdd() {
if (head == null || head.next == null)

return null;
ListNode curr = head;
ListNode ret = head.next;
MyLinkedList retList = new MyLinkedList(ret);
while (curr != null && ret && null) {

curr.next = ret.next;
curr = curr.next;
if (curr != null) {

ret.next = curr.next;
ret = curr.next;

}
}
return retList;

}

Comments: Many students tried to use methods that were not provided in the MyListNode class
(like add and remove). Non-destructive solutions, solutions resulting in NullPointerExceptions, and
creation of cyclical lists were also fairly common.

15

SID:

10 MemoryMap (12 points)
You have been tasked with designing a MemoryMap class that implements the
Map<K, V> interface and supports the following operations:

• V put(K key, V value): Associates the specified value with the specified key in this
map. If the map previously contained a mapping for the key, the old value is replaced.

• V get(K key): Returns the value associated with the input key, or null if there is no
mapping for the key.

• V remove(Object key): Removes the mapping for the specified key from this map if
present. Returns the previous value associated with the input key, or null if there was no
mapping for key.

• ArrayList<K> recent(int m): Returns an ArrayList of the m unique most recently
accessed keys (sorted from most recently accessed to least recently accessed) that still have
associated values in the map. A key k is considered accessed whenever put or get is called
with k as the key. If there are fewer than m elements in the map, returns an ArrayList with
all of the map’s keys. Calls to recent should not modify the state of the MemoryMap in any
way (so calling recent multiple times in a row without any other method calls in between
should result in recent returning identical ArrayLists).

Example:

MemoryMap<String, String> map = new MemoryMap<String, String>();
map.put("A", "1");
map.put("B", "2");
map.recent(2); // Returned list contains: ["B", "A"]
map.get("A"); // Returns "1"
map.recent(2); // Returned list contains: ["A", "B"]
map.put("C", "3");
map.recent(3); // Returned list contains: ["C", "A", "B"]
map.remove("A");
map.recent(2); // Returned list contains: ["C", "B"]

16

SID:

(a) Explain in words how you would implement MemoryMap (including which data structures you
would use) so that the operations listed on the previous page are time efficient. Space effi-
ciency is not a concern. Do not write any code. Solutions that are as efficient as possible
will receive full credit. Less efficient solutions may receive partial credit.

Solution: For part (a), multiple solutions were accepted as long as the student demonstrated
usage of data structures that could potentially solve the MemoryMap question (without con-
sideration for efficiency). Some examples of accepted solutions were:

• HashMap with some list to track the most recent.

• HashMap with either priority queue or second hash map with associated integers to track
recency.

• HashMap, storing pointers to list nodes in a list that tracks most recent.

Comments: Some common errors were:

• Using some kind of binary search tree (keys are not necessarily comparable).

• Not specifying the usage of a HashMap, or assuming that the Map interface was actually
a HashMap.

17

SID:

(b) For each of the methods listed below, explain how you would implement the method for
MemoryMap and state your planned implementation’s average case running time. State any
assumptions you make about the average case running times of any data structures you would
use in your implementation.

Solution: Optimal solution: extend HashMap<K, V>. Add a linked list of ListNode<K> with
a HashMap<K, ListNode<K». Start put, get, and remove with a call to super. This received
10 points.

• put: Look K up in the list node hash map; if it exists, remove it from the linked list and
the hash map. Add K to the front of the linked list. O(1)

• get: Look K up in list node hash map; if it exists, remove it from the linked list and the
hash map. Add K to the front of the linked list. O(1)

• remove: Look K up in list node hash map; if it exists, remove it from the linked list and
the hash map. O(1)

• recent: Retrieve the first m elements of the linked list. O(m).

Comments: Some examples of suboptimal solutions were (where N is the number of entries
in the hash map):

• HashMap and a ArrayList or LinkedList or Stack as your recently accessed list. Ei-
ther you have to move items around in the list to get rid of duplicates (inefficient put/get/re-
move running in O(N) time but recent in O(m)) or you have to purge duplicates during the
recent call (at best, O(N) time using a hash set to check for duplicates, or O(N2) naively.
Correctly implemented and analyzed, this received 7 points.

• HashMap, and a second HashMap<K, Integer> for tracking priorities with a counter.
Every time a get or put is done, we increment the counter and update (or put) into the
second hash map in O(1). When we remove, we remove from both hash maps in O(1).
When recent is called, we sort the entrySet on value and return the first m in O(n logn)
time. This received 7 points.

• The same as above, but using a priority queue instead of a hash map. get and put
took O(logn) and remove took O(n). recent took O(n logk), or O(n logn) depending on
whether you limited the size of the priority queue or not. This usually received around 4-7
points depending on implementation.

• Using a splay tree. There’s almost no way to get this to work; while splay trees do give
the most recent item in constant time at the top of the tree, there are no guarantees as to
where the m most recent items will be in the tree. Additionally, this requires that the keys
be comparable, which is not guaranteed.

18

SID:

Reference Sheet: ArrayList
Here are some methods and descriptions from Java’s ArrayList<E> class API.

Return type and signature Method description

boolean add(E e) Append the specified element to the end of the list

boolean contains(Object o) Returns true if this list contains the specified element

E get(int index) Returns the element at the specified position in this list

Iterator<E> iterator()
Returns an iterator over the elements in this list in proper
sequence

E remove(int index) Removes the element at the specified position in this list

boolean remove(Object o)
Removes the first occurrence of the specified element
from this list, if it is present

E set(int index, E element)
Replaces the element at the specified position in this list
with the specified element (returns the previous element
at this position)

int size() Returns the number of elements in this list

Reference Sheet: Map<K, V>

Here are some methods and descriptions from Java’s Map<K, V> interface API.

Return type and signature Method description

V get(Object key)
Returns the value to which the specified key is mapped, or null
if this map contains no mapping for the key

boolean isEmpty() Returns true if this map contains no key-value mappings

V put(K key, V value)
Associates the specified value with the specified key in this map
(returns the previous value associated with key, or null if there
was no mapping for key)

V remove(Object key) Removes the mapping for a key from this map if it is present

Set<K> keySet()
Returns a Set<K> of the keys contained in this map
(the Set<K> class implements Iterable<K>)

19

