
CS61BL: Data Structures & Programming Methodology Summer 2014

Midterm 2 Solutions
1 Hash Functions (6 points)
For this problem, assume that the String class has the following .equals method:

public boolean equals(Object obj) {
String str = (String) obj;
if(obj == null || str.length() != this.length()) {

return false;
}
for(int i = 0; i < str.length(); i++) {

if(str.charAt(i) != this.charAt(i)) {
return false;

}
}
return true;

}

For each of the hash functions provided, explain whether the hash function could be a valid hash
function for the String class. A hash function is considered invalid if it violates any of Java’s
specified hashCode rules (these rules were also explained in lab) that all hash functions are
required to follow. If the hash function is valid, explain one flaw or disadvantage with the hash
function. If the hash function is invalid, explain why. Note: the String class directly extends the
Object class.

(a) public int hashCode() {
return 3;

}

Solution: This is a valid hash function, since Strings that are .equals to each other will
have the same hash code, and the hash function returns the same thing when called multiple
times on an unchanged object. However, one flaw is there will be a lot of collisions (there will
be a collision between any pair of Strings).

Comments: Although many students stated that it is inefficient for all objects to map to the
same hashcode (as a flaw), many did not explain the reasoning behind this. We were looking
for: all objects would map to the same bucket, and thus would make searching for a given
element similar to searching through a linked list, which is O(n) where n is the total number of
elements in the hash map.

CS61BL, Summer 2014, Midterm 2 Solutions 1

(b) public int hashCode() {
return super.hashCode();

}

Solution: This is not a valid hash function because Strings that are .equals to each
other will not have the same hash code. Instead, this hash function returns some integer
corresponding to the String object’s location in memory.

Comments: The Object class hashCode method is deterministic, since it depends on an
object’s location in memory, which doesn’t change. Many students incorrectly stated that this
hashCode method is nondeterministic.

(c) public int hashCode() {
int h = 0;
int len = length();
for (int i = 0; i < len; i++) {

h = 31 * h + charAt(i);
}
return h;

}

Solution: This is the same as Java’s String class hashCode function (minus memoization).
It is a valid hash code because it satisfies the requirements of a hash function (see part a).
However, one disadvantage of this hash function (in this case, compared to the hash function
from part a) is that it takes longer to run for String objects that are longer. An (impossibly)
ideal hash function would run in constant time.

Comments: Adding a char to an int is perfectly valid. Also, integer overflow causes the
integer value to go from Integer.MAX_VALUE all the way down to Integer.MIN_VALUE,
which is fine. The return type of a hashcode is always an integer, which is stored with a fixed
amount of space in memory (32 bits). Many students thought that a flaw was that more space
was needed to store larger hashcode values; this isn’t true because the size of a hashcode
is the same regardless of the actual hashcode value. “There will be collisions” was not an
accepted disadvantage because this is true of all hash functions.

2 Heaps of Fun (3 points)
(a) Draw the binary tree that the binary min heap array below represents.

X 2 3 4 8 5 10 11

0 1 2 3 4 5 6 7

Solution:

2

3

8 5

4

10 11

CS61BL, Summer 2014, Midterm 2 Solutions 2

(b) Fill out the array below such that it represents the binary min heap from part (a) after removing
the root node.

Solution:

X 3 5 4 8 11 10

0 1 2 3 4 5 6

Comments:

Step 1: Replace root node with last node
11

3

8 5

4

10

Step 2: Bubble down 11 node (switch with minimum of children)
3

11

8 5

4

10

Step 3: Bubble down 11 again (can’t bubble down any more after this, so we’re done)
3

5

8 11

4

10

CS61BL, Summer 2014, Midterm 2 Solutions 3

3 National Heritage (8 points)
Consider the following Person class. Each person has a country of birth, a mother, and a father:

public class Person{
String birthCountry;
Person mother;
Person father;

}

We’re interested in knowing a given person’s national heritage. For example, this person’s national
heritage is USA:

(Person object)

birthCountry = "USA";
mother = null;
father = null;

However, we might say something different if we knew more about that person’s mother and father:

Germany Argentina
\ /

USA

If we knew that the person’s mother is from Germany and that the person’s father is from Argentina
(as shown above), we would instead say that the root person is half German and half Argentinian.
We would then report the root person’s heritage as .5 Germany and .5 Argentina.

However, if we knew even more about the family tree we might say something different again:

Germany Brazil
\ /
Germany Argentina

\ /
USA

Here, we would say the root person’s national heritage is .25 Germany, .25 Brazil, and .5 Argentina.
Notice that we do NOT say the root person is half German because in this example, the person’s
mother is actually only half German.

Fill in the method on the next page, which calculates the national heritage of a person. This
method is written in the Person class. It returns a HashMap, where the keys in the map are
the countries of national heritage and the values are the corresponding percentages, written as
decimals (Double is a type of number in Java that can have decimals). Notice that this HashMap
maintains the invariant that the sum of all of its values always equals 1.

CS61BL, Summer 2014, Midterm 2 Solutions 4

You may assume for simplicity that every Person object either has both a mother and a
father, or has neither (both are null). If a person’s mother and father are both null, that
means we do not know who that person’s mother and father are, and so we say the person’s
national heritage is is entirely their own birthCountry (see the first example where the person’s
national heritage is USA).

You must use recursion to solve this problem. Follow the skeleton below.

Solution:

public HashMap<String, Double> nationalHeritage() {
HashMap<String, Double> heritages = new HashMap<String, Double>();

// ---- base case here ----
if(mother == null || father == null) {

heritages.put(birthCountry, 1);
}

// ---- rest of code here ----
else {

HashMap<String, Double> motherHeritages = mother.nationalHeritage();
HashMap<String, Double> fatherHeritages = father.nationalHeritage();
Set<String> motherCountries = motherHeritages.keySet();
Set<String> fatherCountries = fatherHeritages.keySet();

Double heritageAmount;
for(String motherCountry : motherCountries) {

heritageAmount = 0.5 * motherHeritages.get(motherCountry);
heritages.put(motherCountry, heritageAmount);

}

for(String fatherCountry : fatherCountries) {
heritageAmount = 0.5 * fatherHeritages.get(fatherCountry);

if(heritages.get(fatherCountry) != null) {
heritageAmount += heritages.get(fatherCountry);

}

heritages.put(fatherCountry, heritageAmount);
}

}

return heritages;
}

Comments: This problem tested your understanding of tree recursion and whether you knew how
to use a HashMap. Other than HashMap misuse, the most common mistake was not properly
handling the case where the mother and father shared heritage countries (you were supposed to
add their heritages together).

CS61BL, Summer 2014, Midterm 2 Solutions 5

4 Tree Order (6 points)
(a) Draw a full binary tree that has the following preorder and postorder. Each node should

contain exactly one letter.

Preorder: C T U W X S A Z O
Postorder: W X U S T Z O A C

Solution:

C

T

U

W X

S

A

Z O

(b) What is the inorder of this tree?

Solution: W U X T S C Z A O

5 Up (10 points)
1 import java . u t i l . ∗ ;
2
3 public class Tree {
4
5 private TreeNode roo t ;
6
7 public Tree (Object roo t I tem) {
8 th is . r oo t = new TreeNode (roo t I tem) ;
9 }

10
11 private class TreeNode {
12 private Object i tem ;
13 private Ar rayL i s t <TreeNode> c h i l d r e n ;
14
15 public TreeNode (Object inputObj) {
16 th is . i tem = inputObj ;
17 c h i l d r e n = new Ar rayL i s t <TreeNode > () ;
18 }
19
20 public void addChi ld (Object ch i l dOb j) {
21 c h i l d r e n . add (new TreeNode (ch i l dOb j)) ;
22 }
23 }
24 }

CS61BL, Summer 2014, Midterm 2 Solutions 6

(a) Write a method in the provided Tree class (see previous page) that returns the items of the
tree in reverse BFS order. That is, it returns an array list of items such that for all positive i, all
items of nodes at depth i+1 come before all items of nodes at depth i in the returned array list.
Items of nodes at the same depth level can be in any order in the list. While not necessary,
you are allowed to write up to one helper method.

Solution:

public ArrayList<Object> reverseBFS() {
// Using linked list as queue
LinkedList<TreeNode> fringe = new LinkedList<TreeNode>();
Stack<Object> nodeItems = new Stack<Object>();

// Check if root is null
if(root == null) {

return new ArrayList<Object>();
} else {

fringe.add(root);
}

// Add the items to a stack in BFS order
while(fringe.peek() != null) {

TreeNode currentNode = fringe.poll();
nodeItems.push(currentNode.item);
ArrayList<TreeNode> nodeChildren = currentNode.children;
for(TreeNode nodeChild : nodeChildren) {

fringe.add(nodeChild);
}

}

// Remove items from the stack in reverse BFS order
// And add them to an array list
ArrayList<Object> returnList = new ArrayList<Object>();
while(!nodeItems.empty()) {

returnList.add(nodeItems.pop());
}

return returnList;
}

(b) What is the big-O running time of your algorithm from part (a)? Your answer should be as tight
of a bound as possible.

Solution: O(n) where n is the number of nodes in the tree.

Comments: You had to correctly identify your own algorithm’s running time. If you did not
specify what your variables represent (e.g. n is the number of nodes in the tree), you lost a
point.

CS61BL, Summer 2014, Midterm 2 Solutions 7

6 Analyze mergeAll (6 points)
Recall the homework assignment where you wrote a merge method that returned the result of
merging two sorted linked lists. Given two sorted linked lists as input (one with l elements and
another with r elements), your merge method took O(l + r) time.

You also implemented a mergeAll method that takes in a list of sorted linked lists and outputs
a single sorted linked list that contained all elements of all of the input linked lists. Below are
two implementations of mergeAll. What are the big-Oh running times of each in terms of n (the
number of lists in lists) and m (the number of elements in each list)? Show your work and/or
explain your answer.

Your answers must be as tight as possible (i.e. (nm)!(nm)! is technically a valid upper bound, but
not the one we are looking for) and reduced to simplest terms.

Assume that all linked lists in lists initially have the same number of elements, and that merge
is implemented correctly.

(a)

public static AbstractListNode mergeAll(ArrayList<AbstractListNode> lists) {
for (int i = 1; i < lists.size(); i++) {

AbstractListNode myList = lists.get(i);
AbstractListNode firstLL = lists.get(0);
lists.set(0, merge(firstLL, myList));

}
return lists.get(0);

}

Solution:

Iteration myList size firstList
size

Approx num steps
(this iteration)

Approx num steps
(running total)

1 m m 2m 2m

2 m 2m 3m 5m

i m i×m (i+1)×m (2+3+ · · ·+(i+1))×m

n−1 m (n−1)×m nm

(2+3+ · · ·+n)×m

=
(n+2)(n−1)

2
×m

= O(n2m)

CS61BL, Summer 2014, Midterm 2 Solutions 8

(b)

public static AbstractListNode mergeAll(ArrayList<AbstractListNode> lists) {
while (lists.size() > 1) {

List<AbstractListNode> newLists = new ArrayList<AbstractListNode>();
for (int i = 0; i < lists.size(); i++) {

int numLists = lists.size();
if (numLists % 2 == 1 && i == numLists - 1) {

newLists.add(lists.get(i));
} else {

newLists.add(merge(lists.get(i), lists.get(i + 1)));
i++;

}
}
lists = newLists;

}
return lists.get(0);

}

Solution:

While-loop
iteration

Number of
for-loop
iterations

Steps per call to
merge

Approx num steps
(this iteration)

Approx num steps
(running total)

1
n
2

2m nm nm

2
n
4

4m nm 2nm

i
n
2i 2i ×m nm i×nm

log2 n
n

2log2 n =
n
n
= 1 2log2 n ×m = nm nm

(log2 n)×nm

= O(nm log2 n)

CS61BL, Summer 2014, Midterm 2 Solutions 9

7 I Don’t Even... (5 points)
1 public class MyLinkedList {
2
3 private ListNode head ;
4
5 public MyLinkedList (Object i tem) {
6 head = new ListNode (i tem) ;
7 }
8
9 private class ListNode {

10 private Object i tem ;
11 private ListNode next ;
12
13 public ListNode (Object i npu t I tem) {
14 th is (input I tem , nul l) ;
15 }
16
17 public ListNode (Object input I tem , ListNode next) {
18 th is . i tem = inpu t I tem ;
19 th is . next = next ;
20 }
21 }
22 }

Implement a dontEven method in the MyLinkedList class above that modifies the linked list
such that it contains every other node of the original linked list. For example, if a linked list orig-
inally contains [5, 4, 2, 3, 1], the linked list after calling dontEven should contain [5, 2, 1]. Your
method should work destructively and should not create any new objects. The last ListNode of
a linked list has its next instance variable set to null.

Solution:

public void dontEven() {
ListNode currentNode = head;
while(currentNode != null && currentNode.next != null) {

currentNode.next = currentNode.next.next;
currentNode = currentNode.next;

}
}

Comments: You can’t reassign this (the compiler will give an error). The dontEven method is
in the MyLinkedList class, not the ListNode class. Lastly, you had to make sure your code
would never throw a NullPointerException (this was by far the most common mistake for this
problem).

CS61BL, Summer 2014, Midterm 2 Solutions 10

Reference Sheet: ArrayList
Here are some methods and descriptions from Java’s ArrayList<E> class API.

Return type and signature Method description

boolean add(E e) Append the specified element to the end of the list

boolean contains(Object o) Returns true if this list contains the specified element

E get(int index) Returns the element at the specified position in this list

Iterator<E> iterator()
Returns an iterator over the elements in this list in proper
sequence

E remove(int index) Removes the element at the specified position in this list

boolean remove(Object o)
Removes the first occurrence of the specified element
from this list, if it is present

E set(int index, E element)
Replaces the element at the specified position in this list
with the specified element (returns the previous element
at this position)

int size() Returns the number of elements in this list

Reference Sheet: Map<K, V>

Here are some methods and descriptions from Java’s Map<K, V> interface API.

Return type and signature Method description

V get(Object key)
Returns the value to which the specified key is mapped, or null
if this map contains no mapping for the key

boolean isEmpty() Returns true if this map contains no key-value mappings

V put(K key, V value)
Associates the specified value with the specified key in this map
(returns the previous value associated with key, or null if there
was no mapping for key)

V remove(Object key) Removes the mapping for a key from this map if it is present

Set<K> keySet()
Returns a Set<K> of the keys contained in this map
(the Set<K> class implements Iterable<K>)

CS61BL, Summer 2014, Midterm 2 Solutions 11

Reference Sheet: Stack<E>
Here are some methods and descriptions from Java’s Stack<E> class API.

Return type and signature Method description

boolean empty() Returns whether the stack is empty

E peek() Returns the top element of the stack without removing it

E pop() Removes and returns the top element of the stack

E push(E item) Pushes an item onto the top of the stack and returns it

Reference Sheet: Queue<E>
Here are some methods from Java’s Queue<E> interface API. Note: Java’s LinkedList<E>
class implements the Queue<E> interface.

Return type and signature Method description

E peek()
Returns, but does not remove, the first element of the
queue, or null if the queue is empty

E poll()
Returns and removes the first element of the queue, or
null if the queue is empty

boolean add(E item) Appends the item to the end of the queue and returns true

Reference Sheet: String
Here are some methods from Java’s String class API.

Return type and signature Method description

char charAt(int index) Returns the char value at the specified index

int length() Returns the length of this string

CS61BL, Summer 2014, Midterm 2 Solutions 12

