Physics 137A, Spring 2004, Section 1 (Hardtke), Midterm II

You are allowed one $8 \frac{1}{2}$ by 11 page (both sides) with notes. Put your answers on separate sheets or an exam book. Write your name on each page. There are four questions.

- 1. Suppose a 2×2 matrix U is unitary, i.e. $U^{\dagger}U = 1$.
 - (a) Find the conditions this places on its components. [10 pts.]
 - (b) It turns out that the S-matrix is unitary. Which of the above conditions correspond to R+T=1? R is the reflection coefficient and T is the transmission coefficient. [10 pts.]
- 2. Assume \hat{A} is a linear operator with eigenvector $|\phi\rangle$ and eigenvalue a. Another linear operator \hat{B} has the following commutation relation with \hat{A} :

$$[\hat{A}, \hat{B}] = \hat{B} + 2\hat{B}\hat{A}^2$$

Show that $\hat{B}|\phi\rangle$ is an eigenvector of \hat{A} and find the eigenvalue. [15 pts.]

3. Given a wave function Ψ that satisfies the Schrödinger equation:

$$i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi,$$

show that for any Hermitian operator \hat{A} ,

$$i\hbar \frac{d\langle \hat{A} \rangle}{dt} = \langle [\hat{A}, \hat{H}] \rangle + i\hbar \langle \frac{\partial \hat{A}}{\partial t} \rangle$$

[25 pts.]

4. A 1-dimensional harmonic oscillator is initially in the state,

$$|\Psi(x)\rangle = \frac{1}{\sqrt{5}}[2|\psi_2(x)\rangle + |\psi_3(x)\rangle],$$

where $|\psi_n\rangle$ (n=0,1,2,...) are the stationary state solutions to the potential $V(x)=\frac{1}{2}m\omega^2x^2$.

- (a) If you measure the energy of the system, what are the allowed energies and what is the probability of getting each energy? [10 pts.]
- (b) The raising operator \hat{a}_+ , applied to a stationary-state $|\psi_n(x)\rangle$, gives:

$$\hat{a}_{+}|\psi_{n}\rangle = c_{n}|\psi_{n+1}\rangle.$$

Show that $c_n = \sqrt{(n+1)\hbar\omega}$. [25 pts.]

Hints: Remember that $(\hat{a}_{-})^{\dagger} = \hat{a}_{+}$ and consider the inner product:

$$\langle \hat{a}_+ \psi_n | \hat{a}_+ \psi_n \rangle$$

(c) If you measure the energy of the state given by $|\Phi\rangle = \hat{a}_+ |\Psi(x)\rangle$ (with the expression for $|\Psi(x)\rangle$ given above), what are the allowed energies and what is the probability of each? [15 pts.]