
Math 55 First Midterm Exam, Prof. Srivastava
February 18, 2016, 3:40pm–5:00pm, F295 Haas Auditorium.

Name:

SID:

Instructions: Write all answers in the provided space. Please write carefully and clearly,
in complete English sentences. This exam includes three pages of scratch paper at the end,
which must be submitted, but will not be graded. Do not under any circumstances unstaple
the exam.

You are not allowed to use any notes, books, electronic devices, or your own scratch
paper.

UC Berkeley Honor Code: As a member of the UC Berkeley community, I act with
honesty, integrity, and respect for others.

Question Points

1 12

2 8

3 7

4 8

5 7

6 8

Total: 50

Do not turn over this page until your instructor tells you to do so.
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1. Circle true (T) or false (F) for each of the following. There is no need to provide an
explanation.

(a) (3 points) The compound propositions

(p↔ q)→ r and r ∨ (¬p↔ ¬q)

are logically equivalent. T F

Solution: False. Consider the case p true and q and r false. Then the first
expression is true (because the conditional is satisfied) and the second is false.

(b) (3 points) The proposition

(∃xP (x)) ∧ (∀y∀z(P (y) ∧ P (z)→ y = z))

means that there is exactly one element x in the domain T F
such that P (x) is true.

Solution: True. The first part of the proposition says that there exists an ele-
ment with the property, and the second part says that if there are two elements
with the property then they must be the same.

(c) (3 points) If A and B are sets such that A ⊆ Z and B ⊆ Z
then A×B = B × A. T F

Solution: False. Consider A = {1} and B = {2}. Then A× B = {(1, 2)} but
B × A = {(2, 1)}. The point of this question is that the order matters when
you take the Cartesian product of sets.

(d) (3 points) The set
S = {x ∈ Z : 5x ≡ 3 (mod 7)}

is countably infinite. T F

Solution: True. Since 5 has an inverse modulo 7, we can solve the congruence
by multiplying by 5−1. If x is one solution, then all of the integers x + 7k with
k ∈ Z are also solutions since 7k ≡ 0 (mod 7). Thus the set has the same
cardinality as Z, by the bijection f(k) = x + 7k, so it is countable.
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2. Prove that the following statements are false (i.e., prove their negations). Recall that
Z+ = {1, 2, . . .} denotes the set of positive integers.

(a) (4 points)
∀a, b ∈ Z+ ∃k ∈ Z+ (a + bk is prime).

Solution: Since the negation of “a+ bk is prime” is “a+ bk is composite”, the
negation of the above statement is:

∃a, b ∈ Z+ ∀k ∈ Z+ (a + bk is composite).

To prove this latter statement, we need to produce an a and b such that for
every k ∈ Z+ the integer a + bk is composite. Consider a = b = 2. Assume k is
an arbitrary positive integer. Observe that

a + bk = 2(k + 1)

is composite since k + 1 6= 1. Since k was arbitrary, we conclude that for every
k ∈ Z+ the expression a + bk is composite, as desired.

A lot of people asked me whether it is “ok to provide a counterexample”. It is,
because disproving a statement of type ∀a, bP (a, b) is the same thing as proving a
statement of type ∃a, b¬P (a, b), and the proof is just an example (by existential
generalization). This is called a counterexample to the original statement.

(b) (4 points)
∃a, b ∈ Z+ ∀k ∈ Z+ (a + bk is prime).

Solution: The negation is:

∀a, b ∈ Z+ ∃k ∈ Z+ (a + bk is composite).

Assume a, b ∈ Z+. We need to produce a k ∈ Z+ such that a+ bk is composite.
There are two cases. If a 6= 1 then let k = a and observe that

a + bk = a + ab = a(b + 1),

which is composite since both a and b + 1 are not equal to one. If a = 1, then
let k = b + 2 and observe that

a + bk = 1 + b(b + 2) = b2 + 2b + 1 = (b + 1)2,

which is composite since b+ 1 > 1. Thus, in all cases there exists a k such that
a + bk is composite, as desired.

This was by far the hardest question on the exam. Note that there are several
different ways to produce the necessary k, and the above is just a suggestion.
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3. (7 points) Prove or disprove: if A and B are arbitrary sets, then

P(A) ∪ P(B) = P(A ∪B),

where P(A) = {S : S ⊆ A} denotes the power set of A.

Solution: This is false. Consider the sets A = {1} and B = {2}, with union
A ∪B = {1, 2}. Let S = {1, 2}. Notice that S ⊆ A ∪B so S ∈ P(A ∪B). However,
S 6⊆ A and S 6⊆ B so S /∈ P(A) and S /∈ P(B), which implies that S /∈ P(A)∪P(B).
Thus, we have P(A) ∪ P(B) 6= P(A ∪B).

The intuition behind the above argument is that in general A∪B may contain subsets
S which contain elements from both A and B, and such subsets may not be contained
in either A or B by itself (if each contains an element not contained in the other).

Note that one of the inclusions, namely P(A) ∪ P(B) ⊆ P(A ∪ B) is true. Many
people proved this and received partial credit.
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4. (8 points) Prove that if a and m are positive integers such that gcd(a,m) = 1 then the
function

f : {0, . . . ,m− 1} → {0, . . . ,m− 1}

defined by
f(x) = (a · x) mod m

is a bijection, where mod denotes the remainder operation.

Solution: Since gcd(a,m) = 1 we know that a has an inverse modulo m (proved in
class). Let b be such an inverse, i.e.,

ab ≡ 1 (mod m). (1)

To show that f is a bijection, we need to show that it is injective (1-1) and surjective
(onto). Let S = {0, . . . ,m− 1} denote the domain (and codomain).

We first show that f is injective. Assume x, y ∈ S and f(x) = f(y), i.e.

ax mod m = ay mod m.

This is equivalent to saying

ax ≡ ay (mod m).

Multiplying both sides by b, we have

bax ≡ bay (mod m),

which by (1) is just
x ≡ y (mod m).

Thus, m|x− y. Observe that since 0 ≤ x, y < m, we have |x− y| < m. Thus, this is
only possible if x− y = 0, or x = y as desired.

To see that f is surjective, let z ∈ S be some element in the codomain. Let

x = bz mod m,

and observe that x ∈ S (the domain) and

ax ≡ abz ≡ z (mod m).

Since z ∈ {0, . . . ,m− 1} this means that ax mod m = z, so f(x) = z, as desired.
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5. (7 points) Prove that if a and m are positive integers such that gcd(a,m) 6= 1 then a
does not have an inverse modulo m.

Solution: We prove the contrapositive. Assume a has an inverse modulo m, i.e.,
there exists an integer b such that

ab ≡ 1 (mod m).

This is equivalent to m|(ab− 1), which means there is an integer k such that

ab− 1 = mk,

which after rearrangement is
ba + (−k)m = 1.

Suppose d is any common divisor of a and m, i.e., d|a and d|m. Since b and k
are integers it follows that d|(ba − km), so d|1. Thus we must have d = 1, so
gcd(a,m) = 1, as desired.

You can shorten the proof a little by appealing to the the strong version of Bézout’s
theorem, which says that gcd(a,m) is the smallest positive integer linear combination
of a and m. Thus the existence of the linear combination ba + (−k)m immediately
implies that gcd(a,m) = 1.
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6. (a) (4 points) Calculate the remainder (−9)933 mod 13.

Solution: Observe that −9 ≡ 4 (mod 13), so it suffices to find 4933 mod 13.
Since 13 is prime and 13 6 |4, Fermat’s little theorem tells us that

412 ≡ 1 (mod 13).

Thus, we only care about the remainder of 933 modulo 12; dividing, we get

933 = 77 · 12 + 9,

so
4933 ≡ (412)77 · 49 ≡ 49 ≡ 218 (mod 13).

We now observe that 13 6 |2 so again by Fermat’s little theorem we have 212 ≡ 1
(mod 13), simplifying the above expression to

218 ≡ 26 ≡ 64 ≡ 12 (mod 13),

since 64 = 4 · 13 + 12. Thus

(−9)933 mod 13 = 12.

(b) (4 points) Use the Euclidean Algorithm to find the greatest common divisor of 270
and 63.

Solution: We repeatedly divide the larger number by the smaller one:

270 = 4 · 63 + 18 ⇒ gcd(270, 63) = gcd(63, 18)

63 = 3 · 18 + 9 ⇒ gcd(63, 18) = gcd(18, 9)

18 = 2 · 9 + 0 ⇒ gcd(18, 9) = 9.

We conclude that gcd(270, 63) = 9.
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[Scratch Paper 1]
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[Scratch Paper 2]
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[Scratch Paper 3]
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