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Q1. [7 pts] Game Trees
(a) Alpha-beta pruning true/false For each true/false question, circle the correct answer. Missing choices and

wrong choices with no explanation are worth zero.

(i) [1 pt] [true or false] Minimax search with alpha-beta pruning may not find a minimax optimal strategy.

(ii) [1 pt] [true or false] Alpha-beta pruning prunes the same number of subtrees independent of the order in
which successor states are expanded.

(iii) [1 pt] [true or false] Minimax search with alpha-beta pruning generally requires more run-time than
minimax without pruning on the same game tree.

(b) [4 pts] For each of the following minimax game trees (max is at the root), fill in the leaf nodes with 0 or 1
as utility values. For the left tree (i), fill in the leaves so that as many leaves will be pruned by alpha-beta
as possible. For the right tree (ii), fill in the leaves so that no leaves are pruned. Note that the two trees are
slightly different.

Assume (1) left to right traversal while pruning, and (2) leaf values are potentially drawn from [−∞,∞] (not
from [0, 1]).

(i) Maximum Pruning (ii) No Pruning
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Q2. [11 pts] CSP Futoshiki

Futoshiki is a Japanese logic puzzle that is very simple,
but can be quite challenging. You are given an n x n
grid, and must place the numbers 1, . . . n in the grid such
that every row and column has exactly one of each. Ad-
ditionally, the assignment must satisfy the inequalities
placed between some adjacent squares.

To the right is an instance of this problem, for size
n = 4. Some of the squares have known values, such
that the puzzle has a unique solution. (The letters mean
nothing to the puzzle, and will be used only as labels
with which to refer to certain squares). Note also that in-
equalities apply only to the two adjacent squares, and do
not directly constrain other squares in the row or column.
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2,3
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2,2

1,1

2,1

3,4

4,4
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Let’s formulate this puzzle as a CSP. We will use 42 variables, one for each cell, with Xij as the variable for the cell
in the ith row and jth column (each cell contains its i, j label in the top left corner). The only unary constraints
will be those assigning the known initial values to their respective squares (e.g. X34 = 3).

(a) [3 pts] Complete the formulation of the CSP using only binary constraints (in addition to the unary constraints
specificed above. In particular, describe the domains of the variables, and all binary constraints you think are
necessary. You do not need to enumerate them all, just describe them using concise mathematical notation.
You are not permitted to use n-ary constraints where n ≥ 3.

(b) [2 pts] After enforcing unary constraints, consider the binary constraints relating X14 and X24. Enforce arc
consistency on just these constraints and state the resulting domains for the two variables.

(c) [2 pts] Suppose we enforced unary constraints and ran arc consistency on this CSP, pruning the domains of all
variables as much as possible. After this, what is the maximum possible domain size for any variable? [Hint:
consider the least constrained variable(s); you should not have to run every step of arc consistency.]

(d) [2 pts] Suppose we enforced unary constraints and ran arc consistency on the initial CSP in the figure above.
What is the maximum possible domain size for a variable adjacent to an inequality?

(e) [2 pts] By inspection of column 2, we find it is necessary that X32 = 1, despite not having found an assignment
to any of the other cells in that column. Would running arc consistency find this requirement? Explain why
or why not.
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Q3. [19 pts] Search, logic, and learning

In this question we consider the problem of searching for the smallest propositional logic sentence φ that satisfies
some condition G(φ). (E.g., “find the smallest unsatisfiable sentence containing two distinct symbols.”) Recall that
a propositional logic sentence is a proposition symbol, the negation of a sentence, or two sentences joined by ∧, ∨,
⇒, or ⇔. The proposition symbols are given as part of the problem. The size of a sentence is defined as the sum of
the sizes of its logical connectives, where ¬ has size 1 and the other connectives have size 2. (It is helpful to think
of the sentence as a syntax tree with proposition symbols at the leaves; then the size is the number of edges in the
tree. Figure 1(a) shows an example.)

𝐴

𝐵

𝐴

∧

∨

¬
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  𝐵

	
  𝜆

	
  ¬𝐵	
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  𝐴 ∨ 𝐴 	
  …	
  𝐴 ∧ 𝐴	
  ¬𝐴

	
  ¬¬𝐴 	
  ¬(𝐴 ∧ 𝐴) 	
  ¬(𝐴 ∨ 𝐴) 	
  …

(a) (b)

Figure 1: (a) The sentence A∧ (B ∨¬A) drawn as a syntax tree with 5 edges. (b) Part of the “parsimonious” search
space for sentences with symbols A and B.

(a) [2 pts] Hank Harvard proposes the following problem formulation to explore the search space of sentences:

• There is a dummy start state λ, which is an empty sentence that never satisfies G. The actions applicable
in this state simply replace λ by one of the proposition symbols.

• For all other states, the actions take any occurrence of a proposition symbol (call it p) in the sentence and
replace it with either ¬q for any symbol q, or r ∗ s where r and s are any symbols and “∗” is any binary
connective.

Buzzy Berkeley agrees with Hank that this set of actions will generate all and only the syntactically valid
sentences, but proposes her own formulation:

• For all other states, the actions take any occurrence of a proposition symbol (call it p) in the sentence and
replace it with either ¬p, or p ∗ q where q is any symbol and “∗” is any binary connective.

Part of the search space generated by Buzzy’s formulation is shown in Figure 1(b). Buzzy claims that her
formulation is more efficient than Hank’s but still generates all and only the syntactically valid sentences. Is
she right? Explain.

(b) [1 pt] Define the step cost function for Buzzy’s formulation.
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(c) [1 pt] Assuming there are n symbols, give a O()-expression for the branching factor at depth d of Buzzy’s search
tree.

(d) [1 pt] Using your O() answer for the branching factor, give a O()-expression for the number of nodes at depth
d of Buzzy’s search tree.

(e) [2 pts] We will say that G is a semantic condition if G(φ) depends only on the meaning of φ, in the following
sense: if two sentences φ and ψ are logically equivalent, then G(φ) = G(ψ). Not wishing to be outdone by
Buzzy, Hank now makes the following claim: Whenever Buzzy’s search space contains a solution for a semantic
G then so does the reduced search space using only ¬, ∧, and ∨. Is he right? Explain.

(f) [2 pts] Suppose we are running a uniform cost graph search, which maintains the property that g(n) for every
node in the frontier is the optimal cost to reach n from the root. In a standard graph search, we discard a
newly generated successor state without adding it to the frontier if and only if the identical state is already
in the frontier set or explored set. Assuming we have a semantic condition G, when is it possible to discard a
newly generated successor state? Check all that apply.

� Sentences that are identical to a sentence already in the frontier or explored set

� Sentences that logically entail a sentence already in the frontier or explored set

� Sentences that are logically equivalent to a sentence already in the frontier or explored set

� Sentences that are logically entailed by a sentence already in the frontier or explored set

Now we will apply this general search machinery for sentences to supervised machine learning: the problem of finding
concise hypotheses that are consistent with a set of labeled examples and predict labels for unlabeled examples.

• Let X1, . . . , Xn be the Boolean input variables and Y be the “output” Boolean property we are trying to
predict. A hypothesis H asserts that Y is some function of the inputs, i.e., H is a sentence Y ⇔ φ, where φ
is a propositional formula containing only X1, . . . , Xn. For example, let H0 be the sentence Y ⇔ (X1 ∨X2);
then H0 asserts that the output is true exactly when either of the inputs X1, X2 is true.

• A labeled example E gives the output value for particular values of the inputs; i.e., it is a sentence ψ ⇒ χ,
where ψ is a conjunction of literals, one for each input symbol, and χ is a literal containing the output symbol.
Thus if there are just two inputs, three examples might be

E1 : X1 ∧X2 ⇒ Y

E2 : X1 ∧ ¬X2 ⇒ Y

E3 : ¬X1 ∧ ¬X2 ⇒ ¬Y
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(g) [2 pts] Show, in general, that every labeled example sentence is false in exactly one model for the symbols
X1, . . . , Xn, Y .

(h) [4 pts] Show, by completing the following truth table and marking the relevant rows, that the hypothesis H0

given above logically entails all three examples.

X1 X2 Y E1 E2 E3 H0

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

(i) [2 pts] For supervised machine learning, then, we want to find an H, by searching among formulas φ, that
entails all the examples. Suppose you have available a solver SAT (α) that returns true if α is satisfiable and
false otherwise. Which of the following expressions correctly implements G(φ)?

# SAT (H ∧ E1 ∧ E2 ∧ E3)

# SAT (H ∧ ¬(E1 ∧ E2 ∧ E3))

# ¬SAT (H ∧ ¬(E1 ∧ E2 ∧ E3))

# ¬SAT (H ∧ E1 ∧ E2 ∧ E3)

(j) [2 pts] Now suppose we have an unlabeled test example U4 described only by the ψ-part:

U4 : ¬X1 ∧X2

Now we want to predict the label for U4 given a hypothesis H. Which of the following does this correctly?

# SAT (H ∧ U4 ∧ Y )

# ¬SAT (H ∨ (U4 → Y ))

# ¬SAT (H ∧ (U4 → Y ))

# ¬SAT (H ∧ ¬(U4 → Y ))

Extra Credit [2] (Extra credit, HARD) Any ideas for a nontrivial admissible heuristic for the supervised machine
learning problem in this setting?
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Q4. [20 pts] Probability and Bayes Nets
(a) [3 pts] A, B, C, and D are Boolean random variables. How many entries are in the following probability tables

and what is the sum of the values in each table? Write “?” if there is not enough information given.

Table Size Sum
P (a | B)

P (A | B, c,D)
P (B,C | ¬a)

(b) For each of the following expressions for the joint distributions P (A,B,C,D) write the all of the independence
assumptions used:

(i) [2 pts] P (A,B,C,D) = P (A | B,C)P (D | B,C)P (B)P (C | B)

(ii) [2 pts] P (A,B,C,D) = P (B)P (C)P (A | B,C)P (D | A,B,C)

(iii) [2 pts] P (A,B,C,D) = P (B)P (C | B)P (A | B)P (D | B,C)

(c) Write each of the following expressions in its simplest form, i.e., a single term (factor). Make no independence
assumptions.

(i) [2 pts]∑
a′

P (a′ | D)P (b | a′, D)

(ii) [2 pts]∑
b′,c′,d′

P (A)P (b′ | A)P (c′ | A, b′)P (d′ | A, b′, c′)

(iii) [2 pts]∑
b′ P (A | b′, D)P (b′ | D)P (D)∑
a′,b′ P (a′ | b′, D)P (b′ | D)P (D)
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(d) [2 pts] Given the following Bayes net, write an expression for the probability distribution P (A|e) using only the
conditional probability distributions associated with this Bayes net, e.g. P (A), P (C|B), etc. Normalization
constants, such as α or Z are not permitted.

P (A|e) =

(e) Sampling: Our new droid BB-8 is using likelihood weighted sampling to answer various queries on the Bayes
net from part (d).

(i) [1 pt] [true or false] For the query P (E|b), the value sampled for variable A will have no effect on the
weight of the complete sample.

BB-8 has implemented a simpler version of likelihood weighted sampling to answer the query P (E|b). BB-8’s
method skips sampling variable A and skips incorporating the weight associated with B and proceeds to sample
values for C, D, and then E from P (C|B), P (D|B), and P (E|C,D), respectively.

(ii) [1 pt] [true or false] BB-8’s simpler sampling method will converge to the same answer for P (E|b) as
standard likelihood weighted sampling.

(iii) [1 pt] Is it possible to make a similar simplification to likelihood weighted sampling to make it more
efficient (but still accurate in the limit) when answering the query P (E|c). If so, briefly describe the
simplification.
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Q5. [17 pts] Decision Networks and MDPs
Typically, we define a Markov Decision Process (MDP) as a set of states S, a set of actions A, a reward function
R(s) (note that we don’t use R(s, a, s′) here), a starting state s0, and a transition model T (s, a, s′). Assume that our
discount factor γ = 1. In this question, we’ll explore whether or not we can use decision networks to solve MDPs.
Recall that a decision network is a Bayes net augmented with action and utility variables to model decision problems.

Here’s the idea of how we’ll try to solve an MDP using decision networks: our random variable nodes will model
the state over the first t + 1 timesteps, i.e., S0, . . . , St, and our action nodes will model the action over the first t
timesteps, i.e., A0, . . . , At−1. Using this formulation, we can then just use the decision algorithm to figure out the
sequence of actions to take from time 0 to t− 1. We can repeat this to continue to find actions forever.

First, let’s introduce the specific, very simple MDP that we’ll work with for the rest of the question. In this
MDP, we have two states init and goal, and two actions stay and move. The starting state is init. The reward and
transition functions are as follows:

s R(s)

init 0
goal 1

s a s′ T (s, a, s′)

init stay init 1
init stay goal 0
init move init 0.2
init move goal 0.8
goal stay init 0
goal stay goal 1
goal move init 0.8
goal move goal 0.2

Let’s use t = 2 in this question to keep things simple. For this MDP, we draw the decision network below. Note that
we do not write out the probability table for S2, because it is the same as S1 shifted over.

(a) [4 pts] For the given decision network, fill out the utility table above. Hint: Think intuitively about how we
measure utility in an MDP.
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(b) [5 pts] Using this decision network that is now complete, let’s calculate the expected utilities of all possible
action sequences [A0, A1]. As a starting point, we’ve calculated the expected utility of [A0, A1] = [move, stay]
as 1.6, and the expected utility of [move,move] as 1.12.

(i) [2 pts] What is the expected utility of [stay, stay]?

(ii) [2 pts] What is the expected utility of [stay,move]?

(iii) [1 pt] What is the optimal action sequence [A0, A1]?

(c) [4 pts] Does this optimal action sequence give us the same optimal policy that we would obtain if we solved
the MDP using value or policy iteration? Why, or why not?

(d) [4 pts] Suppose we fix A0 = move. Calculate V PI(S1). Clearly show and label your work for potential partial
credit. Hint: you may need some of the expected utilities used in part (b).
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Q6. [8 pts] MDPs/RL
(a) [5 pts] Multiple Choice. Select the single best answer for each question. We are given an MDP (S,A, T, γ,R),

where R is only a function of the current state s. We are also given an arbitrary policy π.

i) If f(s) = R(s) +
∑
s′

γT (s, π(s), s′)f(s′), then f computes

© V ∗ © Q∗ © π∗ © V π © Qπ © None of these

ii) If g(s) = max
a

∑
s′

T (s, a, s′)[R(s) + γmax
a′

Q∗(s′, a′)], then g computes

© V ∗ © Q∗ © π∗ © V π © Qπ © None of these

iii) If h(s, a) =
∑
s′

T (s, π(s), s′)[R(s, π(s), s′) + γh(s′, a)], then h computes

© V ∗ © Q∗ © π∗ © V π © Qπ © None of these

iv) Which of the following iterative MDP-solving techniques typically converges in the fewest number of
iterations?
© Asynchronous Value Iteration © Batch Value Iteration © Policy Iteration

v) Which of the following reinforcement learning techniques sometimes diverges?
© Exact Q-Learning © Q-Learning with linear function approximations
© Exact TD-Learning

(b) [3 pts] Consider policy evaluation in a setting where the reward R is a function of s, a, s′, instead of just s.
Suppose we have n states, s1 through sn. Then for any s, we have the following policy evaluation equation:

V π(s) =
∑
s′

T (s, π(s), s′)[R(s, π(s), s′) + γV π(s′)].

Now, suppose the policy π(s) that we are evaluating behaves as follows. At each timestep, it picks one out of
m different “local” policies π1(s), π2(s), ..., πm(s) with corresponding probabilities p1, p2, ..., pm of being picked.
(Note that p1 + p2 + ... + pm = 1.) For this timestep, it acts according to the chosen policy. Write down the
policy evaluation equation for V π(s) in terms of the local policies π1(s), π2(s), ..., πm(s).
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Q7. [18 pts] Machine Learning
(a) Overfitting: For each case, select the scenario that is more likely to overfit to training data.

(i) [2 pts] Decision Tree

# Decision Tree with height 10 # Decision Tree with height 100

(ii) [2 pts] Classifying CS188 students against Non-CS188 student

# Using student id as a feature # Using GPA as a feature

(iii) [2 pts] Statistical Learning

# Laplace smoothing with k = 2 # Laplace smoothing with k = 5

(iv) [2 pts] Linear Regression: Using loss function

# ∑N
i (yi − wTxi)2 # ∑N

i (yi − wTxi)2 + λ
∑d
i w

2
i

(b) Suppose we have a following training data with class 1, 0 with x1,x2 features.

oo

o o

+ +

+ +

1 2 3 4

1

2

x1

x2

For each true/false question, circle the correct answer. Missing choices and wrong choices with no explanation
are worth zero.

(i) [1 pt] [true or false] We can use one perceptron to perfectly classify this training data.

(ii) [1 pt] [true or false] We can use a decision tree of depth 2 to perfectly classify this training data.

(iii) [1 pt] [true or false] According to information gain, x1 is a better feature to split than x2 in decision tree.
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(c) Multilayer Perceptron

As you can see from the diagram below, we can use x1 XOR x2 to perfectly classify the four data points. We
aim to construct a neural net to represent this function.

o

o

+

+

0 1

0

1

x1

x2

x1 x2 x1 XOR x2
0 0 o
1 0 +
0 1 +
1 1 o

(i) [1 pt] First, express x1 XOR x2 in conjunctive normal form (CNF) with x1 and x2 as symbols.

Another way to express x1 XOR x2 is in DNF as (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2). We will use this logical expression
to represent our neural net.

We create the following neural net representation:

with Σ1, Σ2, and Σ3 defined as the dot product of the input values and the weights (e.g., Σ1 = 1 · −0.5 +
x1w1 + x2w3),

and g1, g2, and g3 defined by a threshold function:

g(x) =

{
1 x ≥ 0

0 x < 0 .

x1, x2 are Boolean (0/1) inputs. The weights for the bias inputs for g1 and g2 are already defined as -0.5.

(ii) [6 pts] Using this information, find values for weights w1, w2, w3, w4, w5, w6 so that:

• the output of g1, a1, represents x1 ∧ ¬x2,

• the output of g2, a2, represents ¬x1 ∧ x2, and

• the output of g3, a3, represents a1 ∨ a2 = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) = x1 XOR x2.

[Hint: it suffices to consider weights in the set {+1,−1}.]

w1 = w3 = w5 =

w2 = w4 = w6 =
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