
Optional. Mark along the line to show your feelings  Before exam: [____________________].  
                on the spectrum between  and .  After exam: [____________________]. 

UC Berkeley – Computer Science 
CS61B: Data Structures 
 
Midterm #2, Spring 2016 
 
This test has 10 questions worth a total of 60 points. The exam is closed book, except that you are 
allowed to use two pages (both front and back, for 4 total sides) as a written cheat sheet. No 
calculators or other electronic devices are permitted. Give your answers and show your work in 
the space provided. Write the statement out below, and sign once you’re done with the exam. 
Write the statement out below in the blank provided and sign. You may do this before the 
exam begins. 
 
“I have neither given nor received any assistance in the taking of this exam.” 

 
________________________________________________________________________________________________ 
________________________________________________________________________________________________ 

 
       Signature: ________________________ 

 
 

Name: 
SID: 
Three-letter Login ID:  

  Login of Person to Left: 
Login of Person to Right:  
Exam Room:  
Primary TA (if any):  

 
      
 

 
 
Tips:  

 There may be partial credit for incomplete answers. Write as much of the solution as you 
can, but bear in mind that we may deduct points if your answers are much more 
complicated than necessary. 

 There are a lot of problems on this exam. Work through the ones with which you are 
comfortable first. Do not get overly captivated by interesting design issues or complex 
corner cases you’re not sure about. 

 Not all information provided in a problem may be useful.  
 Unless otherwise stated, all given code on this exam should compile. All code has been 

compiled and executed before printing, but in the unlikely event that we do happen to 
catch any bugs during the exam, we’ll announce a fix. Unless we specifically give you the 
option, the correct answer is not ‘does not compile.’ 

 The last problem is the “hard” one. 

 Points  Points 

0 0.5 5 6 

1 9 6 3.5 

2 4 7 6 

3 4 8 8 

4 0 9 9 

  10 10 

Total       60 
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0. So It Begins II (0.5 points). Write your name and ID on the front page. Circle the exam room. Write 

the IDs of your neighbors. Write the given statement. Sign when you’re done with the exam. Write your 

login in the corner of every page. 

 

1. BST and Hash Table Essentials (9 Points).  

 

a) Suppose we’re building a map that represents the rental cost in dollars per square foot of various 

locations. Starting from an initially empty BSTMap, if we call put(“SAN JOSE”, 2.9), we’d get 

the tree shown in the box containing one node, with height equal to zero. 

 

Draw the BSTMap after all of the following put operations have completed, in the order given. Assume 

that the tree is ordered based on alphabetical order. Draw your answer in the box to the right. This tree is 

not self-balancing. For reference, the alphabet is _ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789. 

 

put(“LA”, 2.0) 
put(“NYC”, 2.1)  
put(“SD”, 6.3) 
put(“BOSTON”, 2.3)  

put(“UNIT 3”, 18.0) 

put(“SF”, 2.7) 
put(“SD”, 1.9) 
 

 

 

 

 

 

 

 

 

 

 

b) Suppose we repeat the exercise from part a, but with a hash map. Assume the hashCode of our 

strings is equal to the number of the first letter of the string. For example, the hashCode(“SF”) = 
19. For reference, B  2, L 12, N  14, S  19, U  21. Assume we have 5 buckets, and 

assume no resizing happens. Use the method we used in class (chaining). 
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c) Suppose we use a BST to represent a TreeSet. Suppose we call remove(29) on the TreeSet 

below. Draw a valid BST that results. You must use the deletion procedure from class (also known 

as Hibbard deletion). At most two references should change. Draw your tree in the space to the right.  

 

 
 

d) Suppose we try to use a HashMap on a data type where the key’s hashCode always returns 

2000000000, and the value’s hashCode always returns -5. Will the HashMap’s containsKey and 

get methods always return the expected result (don’t worry about runtime)? Assume that equals is 

properly implemented. State yes or no, and briefly explain your answer in the space below. 

 

 

     ____________________________________________________________________________ 

 

e) Suppose we try to create HashSet<Glelk> on the Glelk datatype described below.  Will all 

operations on the HashSet<Glelk> behave as we expect? State yes or no, and briefly explain your 

answer in the space below.   

 

     ____________________________________________________________________________ 

 

public class Glelk { 
 private int x; 
 private int y; 
 
     /** Normally an equals method should check that o is actually a Glelk,  
         as in HW3. However we have omitted this check for brevity. This  
         will not affect the answer to part e.*/ 
 public boolean equals(Object o) { 
  Glelk other = (Glelk) o; 
  return (this.x == other.x) && (this.y == other.y); 
 } 
 public int hashCode() { 
  return super.hashCode() / 2; 
 } 
} 
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2. WeightedQuickUnionUF (4 Points).  

 

a) Draw a valid WeightedQuickUnionUF tree with worst case height, given sizes of N=1, N=2, N=4, 

N= 6, and N=8 in the boxes below, where N is the number of items in the 

WeightedQuickUnionUF. The first two are done for you. Recall that the height of a tree is the 

length of the longest path from the root to any leaf, so the height of the tree for N=2 is 1. 

 

 

 
 

 

 

 

 

 

N=1 

 
 

 

 

 

N=2 

 
 
 
 
 
 
 
 

N=4 

 

 

 

 

 

 

 

 

 

N=6 

 

 

 

 

 

 

 

 

 

N=8 

 

 

 

 

 

 

 

 

 

(draw anything) 

 

 

b) Give the best case height and worst case height of a WeightedQuickUnionUF tree in Θ notation in 

terms of N, the number of items in the WeightedQuickUnionUF. 

 

Best:  _____________ 

 

 

Worst: _____________ 
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3. Exceptions (4 Points). 

 

Consider the code below, with print statements in bold. Recall that x / 2 rounds down to the nearest 

integer. 

 

public static void checkIfZero(int x) throws Exception { 
    if (x == 0) { 
        throw new Exception("x was zero!"); 
    } 
    System.out.println(x); 
} 
 
public static int mystery(int x) { 
    int counter = 0; 
    try { 
        while (true) { 
            x = x / 2; 
            checkIfZero(x); 
            counter += 1; 
            System.out.println("counter is " + counter); 
        } 
    } catch (Exception e) { 
        return counter; 
    } 
} 
 

public static void main(String[] args) { 
    System.out.println("mystery of 1 is " + mystery(1)); 
    System.out.println("mystery of 6 is " + mystery(6)); 
} 
 

What will be the output when main is run? You may not need all lines. 

 

_________________________________________ 

_________________________________________ 

_________________________________________ 

_________________________________________ 

_________________________________________ 

_________________________________________ 

_________________________________________ 

_________________________________________ 

 

4. (0 points). This religion, founded by J.R. “Bob” Dobbs, first made its public appearance in the 1979 

pamphlet "The World Ends Tomorrow and You May Die".  
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5. Runtime in Context (6 Points).  

 

a) Suppose we read a text file containing a list of city names and their cost of living, using the 

following code. Here BSTMap is the same as the implementation you created for lab8 with no special 

balancing features. Assume isEmpty, readString, and readDouble run in constant time. 

Assume that all Strings are of constant length. Assume throughout the problem that the input files 

are properly formatted and that no errors occur during execution. Assume all city names are unique. 

 

public static Map<String, Double> readData(In in) { 

Map<String, Double> m = new BSTMap<String, Double>(); 

while (!in.isEmpty()) { 

   m.put(in.readString(), in.readDouble()); 

} 

return m; 

} 

 

If there are N such cities in the file, what will be the runtime needed to complete execution of the 

readData function? Give your answer in Θ notation, for the best and worst case.  

 

Best case:   __Θ____________ 

Worst case:  __Θ____________ 

 

b) Suppose that instead of a BSTMap, we use a HashMap like the one you implemented in lab9 or 

java.util.HashMap. Give the best and worst case runtimes to complete execution of the 

readData method. The String class’s hashCode method takes takes Θ(1) time (since our Strings 

are of constant length). 

 

Best case:   __Θ____________ 

Worst case:  __Θ____________ 

 

c) Finally, suppose that instead of a BSTMap, we instead use a 2-3-TreeMap. Give the best and worst 

case runtimes to complete execution of the readData method. 

 

Best case:   __Θ____________ 

Worst case:  __Θ____________ 
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6. Empirical Analysis (3.5 Points).  

 

a) Suppose we write a program that takes one argument as input N. Suppose we use the Stopwatch 

class to measure the total running time R(N) of our program for various values of N, collecting the 

following data. Approximate the empirical run time in tilde notation as a function of N. Reminder 

from Asymptotics III: assume the formula is of the form ~ aNb , and use only the largest data points. 

It is OK to round your exponent. It is OK to leave any constant factors in terms of a fraction. Do not 

leave your answer in terms of logarithms. 

 

    N     R(N) 

     -------------- 

      62      17000 

     125      39000 

     250      75000 

     500     500000 

    1000    4000000 

 

R(N) ~  _______________ 

 

 

 

 

 

 

 

 

 

 

 

Designated Chillout Zone. Have a good time!!  
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7. Leeway (6 Points). Consider the binary search tree below. Each symbol represents an object stored in 

the BST, e.g.  might represent the string “josh”, and  might represent the string “snowman”. 

 

 
 

 

 

a)  Based on the ordering given by the tree above, fill in the tree below with valid symbols. Symbols 

must be unique. You may only use the 7 printed symbols (do not include any symbols from part b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) For each of the insertion operations below, use the information given to "insert" the element into the 

TOP TREE WITH PRINTED SYMBOLS, NOT THE TREE WITH YOUR HANDWRITTEN 

SYMBOLS by drawing the object (and any needed links) onto the tree.  You can assume the objects are 

inserted in the order shown below. You should not change anything about the original tree; you should 

only add links and nodes for the new objects.  If there is not enough information to determine where the 

object should be inserted into the tree, circle “not enough information”. If there is enough information, 

circle “drawn in the tree above” and draw in the tree AT THE TOP OF THE PAGE. 

 



CS61B MIDTERM, SPRING 2016 

Login: _______ 
 

 9 

8. Balanced Trees (8 Points) 

 

a) Suppose we have the max heap below, with array representation as shown. Show the heap after the 

maximum is deleted, using the procedure described in class. Give your answer as an array. 

 

--- 8 6 5 2 3 5 1 1 0    

 
 

 
 

 

Your answer: 

 

---             

 

 

b) Consider the 2-3 tree below. What order should we insert these numbers so that we get the tree 

shown? There may be multiple correct answers. 

 

 

 

Answer: 

 

 

c) Tumelo Barttrain suggests creating a special version of a heap where each item has 4 children to 

improve performance. Would such a heap have better, worse, or the same asymptotic performance in Θ 

notation as compared to a normal binary heap? Briefly explain your reasoning.  
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9. That Asymptotics Problem You Knew Was Coming (9 Points). 

 

For each of the pieces of code below, give the runtime in Θ(·) notation as a function of N. Your answer 

should be simple, with no unnecessary leading constants or unnecessary summations. 

 

________  public static void p1(int N) { 
   for (int i = 0; i < N; i += 1) { 
    for (int j = 1; j < N; j = j + 2) { 

System.out.println(“hi!”); 
    } 
   } 

} 

 

________  public static void p2(int N) { 
   for (int i = 0; i < N; i += 1) { 
    for (int j = 1; j < N; j = j * 2) { 

System.out.println(“hi!”); 
    } 
   } 

} 

 

________  public static void p3(int N) { 
if (N <= 1) return; 
p3(N / 2); 
p3(N / 2); 

} 

 

________  public static void p4(int N) { 
int m = (int) ((15 + Math.round(3.2 / 2)) *  

        (Math.floor(10 / 5.5) / 2.5) * Math.pow(2, 5)); 
for (int i = 0; i < m; i++) { 

System.out.println("hi"); 
} 

} 

________  public static void p5(int N) { 
for (int i = 1; i <= N * N; i *= 2) { 

for (int j = 0; j < i; j++) { 
System.out.println("moo"); 

} 
} 

} 
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10. Yum Yum Agar (10 Points). The Agar class is defined as follows: 

public class Agar { 
    public int size; /* assume this is always even and positive */ 
    public Agar(int s) { size = s; } 
    public boolean equals(Object o) { 
        Agar other = (Agar) o; 
        return this.size == other.size; 
    } 
    public int hashCode() { /* Not shown, but assume it’s consistent with 
      equals, always positive, and does not change unless size changes. */ 
    } 
} 
Usually, Agars are simple, inert creatures, and coexist peacefully with one another... but not always. 

You are going to store these Agars in a HashSet. Agars are inserted using a special insertAgar 

method: If you try to insert an Agar into a hash bucket, and there is already an Agar with exactly half 

its size in the same bucket, then the new Agar will eat the smaller Agar, absorb its size (new size will 

be the original size plus the eaten Agar’s size), and then attempt insertion (now bigger) into the 

HashSet again. It is possible for an Agar to eat multiple other Agars before finally being inserted into 

the HashSet. Agars do not eat Agars in other buckets. Next page has an example and clarifications. 

 

Your ultimate goal for this problem is to write the code for insertAgar to successfully emulate these 

rules. Don’t worry about null input cases. Here is a description for each of your input arguments: 

- x, the Agar that you are inserting. You have access to its public fields and methods. 

- set, the HashSet that will contain all Agars so far (if they haven't been gobbled up). It should be 

noted all instance variables of HashSet are private. 

- M, the number of buckets in the HashSet. You may assume M does not change during the method call. 

 

a) Write a helper method that returns true if a given Agar x is going to eat a smaller Agar. Assume 

HashSet uses the same process for converting hashCodes to bucket numbers that we used in class. 

Note that the hashCode is always positive, so there’s no need for abs or & 0x7FFFFFFF1. For full 

credit, your solution should be as asymptotically fast as possible (we won’t say exactly how fast). 
static boolean shouldEatSomething(Agar x, HashSet<Agar> set, int M) { 
    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________     } 

                                                        
1 Though we didn’t discuss in HW3: the reason we did & 0x7FFFFFFF was to handle negative hash codes. 
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b) Now finally write insertAgar. You may use shouldEatSomething even if you did not 

implement it successfully. The simplest solution will use shouldEatSomething, but it is possible to 

implement insertAgar without using it. 

 

static void insertAgar(Agar x, HashSet<Agar> set, int M) { 
    ______if set.contains(x) { return; }________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

    ____________________________________________________ 

}  

 

  

 

Example: 

 Suppose we have a HashSet called set with 1000 buckets, and there is an Agar of size 20 in 

bucket 0, an Agar of size 30 in bucket 1, and an Agar of size 180 in bucket 5. 

 Suppose we create Agar chris = new Agar(40), then call insertAgar(chris, set, 
1000). If (and only if) chris tries to go into bucket 0, chris will eat the Agar of size 20 

(destroying it), increase in size to 60, and then attempt insertion again, potentially with a 

different hash code. If (and only if) chris (now of size 60) happens to try to go into bucket 1 

this time, chris will eat the Agar there of size 30, increase in size to 90, and then attempt 

insertion yet again. If chris tried to go into bucket 5, he’d get inserted into that bucket, joining 

the existing Agar of size 180. chris is not eaten, since the size 180 Agar was not just inserted. 

 

Some clarifications and notes: 

 Assume that the size never exceeds the maximum integer value in Java: 2147483647. 

 Assume that the size of an existing Agar is never changed by any code other than yours.  

 Any call to insertAgar should increase the number of Agars by at most one, but could 

actually decrease the number of Agars, if some Agars are eaten. 

 If we call insert(x, set, M) and x exists in the HashSet, we abort the operation, even if 
shouldEatSomething(x, set, M)  is true. 

 public HashSet methods include add, addAll, clear, contains, containsAll, equals, 

getClass, hashCode, isEmpty, iterator, remove, removeAll, size, toArray, 

toString. 

 


