
Midterm exam CS 189/289, Fall 2015 

 You have 80 minutes for the exam. 

 Total 100 points:  

1. True/False: 36 points (18 questions, 2 points each). 

2. Multiple-choice questions: 24 points (8 questions, 3 points each).  

3. Three descriptive questions worth 10, 15, 15 points.  

 The exam is closed book, closed notes except your one-page crib sheet. 

 No calculators or electronic items. 

 For true/false questions, fill in the True/False bubble. 

                             For multiple-choice questions, fill in the bubbles for ALL 

CORRECT CHOICES (in some cases, there may be more than one). NO 

PARTIAL CREDIT: all correct answers must be checked and no incorrect 

answers should be checked. 

First name 
 

 

Last name 
 

 

SID 
 

 

First and last name of student to your left 
 

 

First and last name of student to your right 
 

 

 

For staff only  
T/F /36 
Multiple choice /24 
Problem I /15 
Problem II /15 
Problem III /10 
Total /100 
 



Notation: 

X: the training data matrix of dimension (N, d), of N rows representing samples 

and d columns representing features.  

x: an input data vector of dimension (1, d) of components xi, i=1:d. 

xk: a training example of dimension (1, d) is a row of X, k=1:N. 

w: weight vector of a linear model of dimension (1, d) such that  

f(x) = w xT = x wT= i=1:d wi xi 

y: target vector of dimension (N, 1) of components yk. 

: weight vector of dimension (N, 1) of kernel method f(x) = k=1:N k k(x, xk) 

k(u, v): a kernel function (a similarity measure between two samples u and v). 

 

True/False (36 points): 

1. Stochastic gradient descent performs less computation per update than batch 

gradient descent.  

TRUE                                FALSE 

 

2. A function is convex if its Hessian is negative semidefinite.  

TRUE                                FALSE 

 

 

3. If N < d, the solution to XwT = y is unique.  

TRUE                                FALSE 

 

4. A support vector machine computes P(y|x).  

TRUE                                FALSE 
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5. Adding a ridge to XTX guarantees that it is invertible.  

TRUE                                FALSE 

 

6. Grid search is less prone to being trapped in a local minimum than other 

heuristic search methods.  

TRUE                                FALSE 

 

7. The bootstrap method involves sampling without replacement.  

TRUE                                FALSE 

 

8. A non linearly-separable training set in a given feature space can always be 

made linearly-separable in another space. 

TRUE                                FALSE 

 

9.  Using the kernel trick, one can get non-linear decision boundaries using 

algorithms designed originally for linear models.  

TRUE                                FALSE 

 

10.  Logistic regression cannot be kernelized. 

TRUE                                FALSE 

 

 

11.  Ridge regression, weight decay, and Gaussian processes use the same 

regularizer: ǁwǁ2
.  

TRUE                                FALSE 

 

12.  Hebb’s rule computes the centroid method solution, if the target values are 

+1/N1 and -1/N0 (N1 and N0 are the number of examples of each class) 

TRUE                                FALSE 

  



13.  Any kernel method can be thought of as a parametric method in a possibly 

infinite dimensional space. 

TRUE                                FALSE 

 

14. Nearest neighbors is a parametric method. 

TRUE                                FALSE 

 

15. A symmetric matrix is positive semidefinite if all its eigenvalues are positive or 

zero.  

TRUE                                FALSE 

 

16. Zero correlation between any two random variables implies that the two 

random variables are independent.  

TRUE                                FALSE 

 

17. The Linear Discriminant Analysis (LDA) classifier computes the direction 

maximizing the ratio of between-class variance over within-class variance.  

TRUE                                FALSE 

 

 

18. If we repeat an experiment twice and get p-values p1 and p2, the minimum of 

the two p-values is the p-value of the overall experiment.  

TRUE                                FALSE 

 

 

 

 

 

 



Multiple choice questions (24 points) 

 

1. You trained a binary classifier model which gives very high accuracy on the 

training data, but much lower accuracy on validation data. The following may 

be true:  

o This is an instance of overfitting. 

o This is an instance of underfitting.  

o The training was not well regularized.  

o The training and testing examples are sampled from different 

distributions. 

 

2. Okham in the 14th century is credited to have stated that one should “shave 

off unnecessary parameters of a model”. Which of the following implement 

that principle:  

o Regularization. 

o Maximum likelihood estimation. 

o Shrinkage. 

o Empirical risk minimization. 

o Feature selection. 

 

3. Good practices to avoid overfitting include: 

o Using a two part cost function which includes a regularizer to penalize 

model complexity. 

o Using a good optimizer to minimize error on training data. 

o Building a structure of nested subsets of models and train learning 

machines in each subset, starting from the inner subset, and stopping 

when the cross-validation error starts increasing. 

o Discarding 50% of randomly chosen samples. 

 



4. Wrapper methods are hyper-parameter selection methods that: 

o Should be used whenever possible because they are computationally 

efficient. 

o Should be avoided unless there are no other options because they are 

always prone to overfitting. 

o Are useful mainly when the learning machines are “black boxes”. 

o Should be avoided altogether. 

 

5. Three different classifiers are trained on the same data. Their decision 

boundaries are shown below. Which of the following statements are true? 

 

o The leftmost classifier has high robustness, poor fit. 

o The leftmost classifier has poor robustness, high fit. 

o The rightmost classifier has poor robustness, high fit. 

o The rightmost classifier has high robustness, poor fit. 

 

 

6. What are support vectors:  

o The examples farthest from the decision boundary. 

o The only examples necessary to compute f(x) in an SVM. 

o The class centroids. 

o All the examples that have a non-zero weight k in a SVM. 

  



7. Which of the following does not converge to a solution if the training samples 

are not linearly separable? 

o Linear Logistic Regression. 

o Linear Soft margin SVM.  

o Linear hard-margin SVM. 

o The centroid method. 

o Parzen windows. 

 

8. The number of test examples needed to get statistically significant results 

should be:  

o Larger if the error rate is larger. 

o Larger if the error rate is smaller. 

o It does not matter. 

 

 

 

 

  



Three descriptive problems 

Problem I: Gradient descent (15 points). 

Given N training data points {(xk, yk)}, k=1:N, xk in Rd, and labels in yk in {-1,1}, we 

seek a linear discriminant function f(x) = w.x optimizing the loss function L(z) = e-z, 

for z=y f(x).   

Question I.1 (3 points) Is L(z) a large margin loss function? Justify your answer (a 

graphical justification may be useful). 

 

 

 

 

 

 

 

 

 

 

 

  



Question I.2 (4 points) Derive the stochastic gradient descent update w  w + w 

for L(z), where w is the difference between two consecutive values of w: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question I.3 (3 points) We call Remp(w) = k=1:N L(zk), where zk = yk f(xk), the 

“empirical risk”. Derive the batch gradient update for the empirical risk: 

 

 

 

 

 

 

 

 



Question I.4 (3 points) Suppose you also want to include a penalty term  ǁwǁ2 to 

the risk functional that you wish to minimize. Derive the batch gradient update 

for the regularized risk Rreg(w) = Remp(w) +  ǁwǁ2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question I.5 (2 points) How do you estimate  (answer in at most 3 words)? 

 

 

  



Problem II. Classification concept review (15 points). 

Question II.1. Centroid method. Now consider a 2-class classification problem in a 2-

dimensional feature space x=[x1, x2] with target variable y=±1. The training data comprises 7 

samples as shown in Figure 1 (4 black diamonds for the positive class and 3 white diamonds for 

the negative class). The 7 samples are also numbered for your reference. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Data for Problem II.1 Centroid method question. 

Question II.1.A (2 points): Draw on Figure 1 the centroids of the two classes (mark them with a 
circled “+” for the positive class and a circled “-“ for the negative class). Join the centroids with 
a thick dashed line. Draw the decision boundary of the centroid method with a thick solid line. 

Question II.1.B (1 point) What is the training error rate?  

 

Question II.1.C (2 points) Is there any sample such that upon its removal, the decision boundary 

changes in a manner that the removed sample goes to the other side (Answer “yes” or “no”)? 

 

Question II.1.D (2 points) What is the leave-one-out error rate?  
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Question II. 2: Support Vector Machine (SVM). Consider again the same training data as in 

Question II.1, replicated in Figure 2, for your convenience. The “maximum margin classifier” 

(also called linear “hard margin” SVM) is a classifier that leaves the largest possible margin on 

either side of the decision boundary. The samples lying on the margin are called support 

vectors. 

 

 

 

 

 

 

 

 

 

Figure 1: Data for Problem II.2 SVM method question. 

Question II.2.A (2 points): Draw on Figure 2 the decision boundary obtained by the linear hard 
margin SVM method with a thick solid line. Draw the margins on either side with thinner 
dashed lines. Circle the support vectors. 

Question II.2.B (1 point) What is the training error rate? 

 

Question II.2.C (1 point) The removal of which sample will change the decision boundary?  

 

Question II.2.D (2 points) What is the leave-one-out error rate?  

 

Question II.2.E (1 point) A method is more robust if the difference between training error and 

leave-one-out error is smaller. Which of the two methods (centroid or SVM) is more robust?  

 

Question II.3.F (1 point) A method has a better fit is it has a smaller training error. Which of the 

two methods has the best fit?  
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Problem III. Newton-Raphson for least-square regression (10 points)              

[Hard problem, attempt only if you have time.] 

In this problem, we will derive an optimization algorithm which we did not study 

in class, called the Newton-Raphson algorithm. The algorithm makes updates in a 

manner that often allows reaching the solution faster than regular gradient 

descent. 

Suppose we start with an initial value of a (1, d) vector w that we call w(0). We 

know that the first order Taylor approximation of ∇wR(w(1)), at the point w(0) is:  

∇wR(w(1)) = ∇wR(w(0)) + (w(1) - w(0)) ∇w
2R(w(0)) 

Question III.1 (3 points). We want to minimize R(w(1)) using this approximation of 

∇wR(w(1)). Find the update equation for the value of w(1). This is called the 

Newton-Raphson update. Notes: This is not a trick question, you just have to 

solve for w(1) after equaling ∇wR(w(1)) to 0. You can assume that the (d, d) Hessian 

matrix ∇w
2R(w(0)) is invertible.  

 

 

 

 

 

 

 

 

 

 

 



Question III.2 (4 points). Consider now the linear regression problem: We are 

given a training data matrix X of dim (N, d) and a target vector y of dim(N, 1) and 

want to find a weight vector w of dim (1, d) such that f(x) = x wT approximates y 

best, in the least square sense. The risk functional is: R(w) = (XwT - y)T (XwT- y). We 

will assume that we are in the “regression case” N>d and that the Hessian is 

invertible. Find the Newton-Raphson update for w(1). 

 

 

 

 

 

 

 

Question III.3 (3 points). Recall the solution to the problem we found in class 

using the normal equations or the solution found by solving for ∇wR(w)  = 0 

directly. Compare with the solution obtained in question (2). How many iterations 

of the Newton-Raphson update do we need to perform for linear regression? 

 

 

 

 

 

 

 

 

 

 

 

 


