
EECS 16B Designing Information Devices and Systems II
Spring 2016 Anant Sahai and Michel Maharbiz Midterm 1

Exam location: The Faery Land Of Unicorns and Rainbows

PRINT your student ID:

PRINT AND SIGN your name: ,
(last) (first) (signature)

PRINT your Unix account login: ee16b-

PRINT your discussion section and GSI (the one you attend):

Name of the person to your left:

Name of the person to your right:

Name of the person in front of you:

Name of the person behind you:

Section 0: Pre-exam questions (3 points)

1. What other courses are you taking this term? (1 pt)

2. Think back to remember a moment where you triumphed. Describe it. How did you feel? (2 pts)

Do not turn this page until the proctor tells you to do so. You can work on Section 0 above before time starts.
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]
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Section 1: Straightforward questions (36 points)
Unless told otherwise, you must show work to get credit. There will be very little partial credit given in this
section. You get one drop: do 4 out of the following 5 questions. (We will grade all and keep the best 4
scores.) Each problem is worth 9 points. No additional bonus for getting them all right.

3. DFT Matching

You have to match the n-long time domain signal ~x with its frequency domain ~X coordinates. The DFT
coefficients (coordinates in the DFT basis) are represented with their magnitudes |X [p]| and phases ∠X [p],
i.e., X [p] = |X [p]|ei∠X [p] as p goes from 0 (constant) up through n− 1. Throughout this problem n = 30.
(For your information, 1√

30
≈ 0.18 and

√
30≈ 5.5.)

Circle your answer. There is no need to give any justification.

(a) Given the time domain signal below,

Time
0 5 10 15 20 25 30

x[
t]

0

0.5

1
Time domain signal

which one is the corresponding DFT coefficients?

0 5 10 15 20 25 30

|X
[p

]|

0
1
2
3

Magnitude of X[p]

0 5 10 15 20 25 30

 X
[p

]

-:

0

:
Phase of X[p]

(A)
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|X
[p

]|

0

0.1

0.2
Magnitude of X[p]

0 5 10 15 20 25 30

 X
[p

]

-:

0

:
Phase of X[p]

(B)

0 5 10 15 20 25 30

|X
[p

]|

0

0.2

0.4
Magnitude of X[p]

0 5 10 15 20 25 30

 X
[p

]

-:

0

:
Phase of X[p]

(C)

Solutions: By definition, X [p] = ∑
n−1
t=0 x[t]up[t]∗ = up[0]∗ = 1√

n , so B is the right answer since it is

clearly a constant magnitude with zero phase. The zero-phase is because 1√
n is real and positive.
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(b) Given the time domain signal below,

Time
0 5 10 15 20 25 30

x[
t]

-2

0

2
Time domain signal

which one is the corresponding DFT coefficients?

0 5 10 15 20 25 30

|X
[p

]|

0
1
2
3

Magnitude of X[p]

0 5 10 15 20 25 30

 X
[p

]

-:

0

:
Phase of X[p]

(A)
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[p
]|
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]

-:

0

:
Phase of X[p]

(B)
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|X
[p

]|

0
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0.2
Magnitude of X[p]
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[p

]

-:

0

:
Phase of X[p]

(C)

Solutions: The signal is clearly an addition of two cosines, so A is the right answer. B is just a single
phase-shifted cosine since there are only two complex frequency components that respect conjugate
symmetry. C is just the answer to the previous part and so can’t be the answer to this one.

(c) Given the DFT domain representation below,

0 5 10 15 20 25 30

|X
[p

]|

0

5

Magnitude of X[p]

0 5 10 15 20 25 30

 X
[p

]

-:

0

:
Phase of X[p]

which one is the corresponding time domain signal?

Time
0 5 10 15 20 25 30

x[
t]

-1

0

1
Time domain signal

(A)

Time
0 5 10 15 20 25 30

x[
t]

-1

0

1
Time domain signal

(B)

Time
0 5 10 15 20 25 30

x[
t]

-1

0

1
Time domain signal

(C)

Solutions: By definition, x[t] = ∑
n−1
p=0 X [p]up[t] =

√
nu15[t] = ei 2π

30 15t = eiπt = (−1)t , so A is the right
answer.
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Many students were tempted by choice (C) because they thought that this has a single complex fre-
quency in it and so should look sinusoidal. But when we look at (C) we see that the frequency is clearly
2 — there are two cycles in the block. 2 is not 15. In (A), we see that there are 15 cycles present.
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4. U square

Consider the 4×4 matrix U that consists of the DFT basis for four-dimensional space. (n = 4)

U =
[
~u0 ~u1 ~u2 ~u3

]
(a) Compute both ~u1

T ~u2 and ~u1
T ~u3.

Solutions:
For ~u1

T ~u2, there are three ways of solving it.
Arguably, the easiest and most elegant is to observe that~uT

1 =~uT
4−3 =~uT

−3 =~u∗3. Then we have

~u1
T ~u2 =~u∗3~u2 = 0

by the orthonormality of the DFT basis and the definition of the complex inner product.
Second, we could follow the derivation of orthonormality itself and evaluate the sum using the geo-
metric series formula:

~u1
T ~u2 =

1
4

3

∑
t=0

ei 2π

4 tei 2π

4 2t (1)

=
1
4

3

∑
t=0

ei 2π

4 3t (2)

=
1
4

e(i
2π

4 3)4−1

ei 2π

4 3−1
(3)

= 0 (4)

Third, there is the simple way of just writing out the vectors doing the arithmetic directly:

~u1
T ~u2 =

1
2
[1, i,−1,−i]

1
2


1
−1
1
−1

 (5)

=
1
4
(1− i−1+ i) (6)

= 0 (7)

Similarly, for ~u1
T ~u3, there are three ways of solving it.

First and most elegantly, observe that~uT
1 =~uT

4−3 =~uT
−3 =~u∗3. Then we have

~u1
T ~u3 =~u∗3~u3 = 1

by the orthonormality of the DFT basis and the nature of complex inner products.

EECS 16B, Spring 2016, Midterm 1 6



Second using geometric sums:

~u1
T ~u3 =

1
4

3

∑
t=0

ei 2π

4 tei 2π

4 3t (8)

=
1
4

3

∑
t=0

ei 2π

4 4t (9)

=
1
4
(4) (10)

= 1 (11)

And third, the simple way of just writing out the vectors doing the arithmetic directly:

~u1
T ~u3 =

1
2
[1, i,−1,−i]

1
2


1
−i
−1
i

 (12)

=
1
4
(1+1+1+1) (13)

= 1 (14)

(b) Compute U2 =UU .
(HINT: Think about the previous part.)
Solutions:
Seeing the pattern above, we can notice that

~up
T ~uq =

{
1, if p+q≡ 0 (mod 4).
0, otherwise

(15)
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Then we have

U2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (16)

This can also be seen by explicit calculation

U2 =
1
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 1
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 (17)

=
1
4


4 0 0 0
0 0 0 4
0 0 4 0
0 4 0 0

 (18)

=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (19)

For the exam, the above is fine. But in the real world, the above fact is pretty important.

Notice that U2 is almost the identity. In fact U2


a
b
c
d

=


a
d
c
b

 is just a time-reversal of the initial vector

except holding the zero-th position constant.
This means that if we can find a fast way to multiply by one of U∗ or U , we essentially also have a
fast way of multiplying by the other as well. The same applies for a circuit implementation. Whatever
clever implication we use for the forward DFT can be tweaked to give the inverse as well.
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5. PCA Recipe
Let~xi ∈ Rd , i = 0, . . . ,n−1 be n data points (column vectors) each having dimension d. Suppose we want
to analyze the low dimensional (say k dimensional where k < d) structure of this data set with PCA.

The goal is to have just k-coordinates for each data point that represent where they are relative to each other
on the best k-dimensional structure that fits all the data points. The following figure provides an illustration
with k = 1 and d = 2.

-1 0 1 2 3 4 5 6 7

-4

-2

0

2

4

6

8

In the figure, the line is the essential 1 dimensional structure and the dots are the n data points. For each data
point, we would want to know the one coordinate describing how far along the line that data point’s closest
representative was.

Your task is to arrange in order an appropriate subset of the steps below to make that happen. Note
that not all steps listed will be used.

Just write out a string (e.g. LEBIGMA) as your answer.

A. Assemble the vectors {~yi} into the columns of the matrix Y .

B. Run SVD on the matrix Y to get Y =UΣV T .

C. Copy the data points into vectors~yi =~xi.

D. Subtract the average from each dimension of the data: yi[ j] = xi[ j]− 1
n ∑

n−1
`=0 x`[ j].

E. Subtract the average from each data point: yi[ j] = xi[ j]− 1
d ∑

d−1
t=0 xi[t].

F. Multiply the matrix Y by V ′T on the right. i.e. Compute YV ′T to get the desired coordinates.

G. Multiply the matrix Y by V ′T on the left. i.e. Compute V ′TY to get the desired coordinates.

H. Multiply the matrix Y by U ′T on the right. i.e. Compute YU ′T to get the desired coordinates.

I. Multiply the matrix Y by U ′T on the left. i.e. Compute U ′TY to get the desired coordinates.

J. Select the first k columns from the matrix V to get V ′

K. Select the last k columns from the matrix V to get V ′

L. Select the first k columns from the matrix U to get U ′

M. Select the last k columns from the matrix U to get U ′

Solutions: DABLI is the desired answer. Some students added C to the beginning and that was harmless.
The important thing to notice was that if the data points are columns, that we need to remove the average
of each row from each entry to get rid of the means and recenter the data. Then, having recentered, the first
columns of U tell the directions on which the data points should be projected to get the coordinates of their
closest representative in the best k-dimensional structure approximating the data.
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6. DFT Meets k-means

There are n discrete-time signals, ~x0,~x1, . . . ,~xn−1, where the length of each signal is d. We want to use the
k-means algorithm to classify them into k clusters, where k < n.

Suppose that we run k-means on the time-domain signals ~x0, . . . ,~xn−1 to find k clusters using the first k
signals to initialize the cluster centers.

Alternatively, suppose we run k-means on the same vectors except in frequency domain (i.e. we take the
DFT of each signal and then run k-means on that collection of DFT-ed signals) using the frequency-domain
representation of the first k signals to initialize the cluster centers.

Is the resulting classification of the n signals by running k-means in the frequency domain going to be
the same or different than the classification that results from running k-means in the time domain?
Briefly justify your answer.

Solutions: The results are the same.

The DFT basis is an orthonormal basis and hence changing coordinates to it preserves distances. Moreover,
the matrix U∗ transforming to DFT coordinates is a linear operator and so, by linearity it commutes with
taking, averages of vectors. In other words, the DFT of the average of a set of vectors is also the average of
the DFTs of those vectors. The operations of the k-means algorithm only consider distances and averages
of data points and so the same clusters will be found if we start from the same starting points.

To expand out this reasoning: In the beginning, the two k-meams runs choose the same set of cluster centers.
Then, each signal (data point) is clustered into the closest center. Because DFT basis is orthonormal, the
distances certainly are preserved and so the classifications are preserved. The initial groupings are the same.

Then the k-means algorithm computes the average of each cluster. Because change of basis is a linear
transformation, the DFT coefficients of an averaged signal are the same as the average of DFT coefficients
of the original signals.

After computing the centroids (DFT coefficients of the average signals), each data point is clustered to the
nearest centroid. The distance between a data signal to each centroid is preserved by the DFT basis. Hence
the grouping result is the same as that of the original signals. The same steps repeat until no cluster get
updated.

Therefore, considering the DFT coefficients of signals, the whole k-means flow is exactly the same as that
on the original signals.
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7. SVD

Let A =

[
2 2 1 1
1 1 2 2

]
=

[
1√
2
− 1√

2
1√
2

1√
2

][
3
√

2 0 0 0
0

√
2 0 0

]
1
2 −1

2
1√
2

0
1
2 −1

2 − 1√
2

0
1
2

1
2 0 1√

2
1
2

1
2 0 − 1√

2


T

.

Find~x such that
A~x =

[
2
0

]
and ‖~x‖ is as small as possible.

Solutions:

This question is asking you to find and apply the Moore-Penrose Pseudoinverse as discussed in Homework
4 Question 3. Recall from the homework that it is defined as,

A† =V Σ̃UT

where,

Σ̃ =


1

3
√

2
0

0 1√
2

0 0
0 0


First, note that,

Σ̃UT =
1
2


1
3 0
0 1
0 0
0 0

[ 1 1
−1 1

]
=

1
2


1
3

1
3

−1 1
0 0
0 0


Then,

A† =
1
2

V


1
3

1
3

−1 1
0 0
0 0

=
1
4


1 −1

√
2 0

1 −1 −
√

2 0
1 1 0

√
2

1 1 0 −
√

2




1
3

1
3

−1 1
0 0
0 0

=
1
6


2 −1
2 −1
−1 2
−1 2


Finally,

~x = A†
[

2
0

]
=

1
3


2
2
−1
−1


If you got this far in the exam, you should get full credit. From now on, this solution is to aid in understand-
ing. To see why this is the minimum norm solution, observe that,

~x =
(

1
3

)
~v0− (1)~v1 +(0)~v2 +(0)~v3
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That is to say, ~x is in the span of ~v0 and ~v1. Since there are only two non-zero singular values, we can
conclude that~v2 and~v3 lie in the nullspace of A. Since V forms a basis and~v2 and~v3 are in the null space,
A~x =~y has many solutions in the form of,

~z =
1
3
~v0−~v1 +α~v2 +β~v3

Since V is an orthonormal transformation, it preserves norms. Note that,

||~x||22 = 1+
1
9

and ||~z||22 = 1+
1
9
+α

2 +β
2

Since the norm in minimized when α = β = 0,~x is the minimum norm solution.
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]
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Section 2: Free-form Problems (72 + 10 points)

8. ROC K-Means (15 pts)

This question is about running k-means to group people into two rock bands based on musical taste. We start
with two people as “band centers” to initialize the algorithm. People regroup into bands based on which
band has an average musical taste closer to them.

This process of determining the musical taste for each band and re-choosing the groups is called re-grouping.
As in k-means, re-grouping will continue until nobody wants to leave their band and join the other one. At
that point, we will have bands that are ready to actually play gigs.

We decide to monitor the grouping process as k-means evolves. To do this, we define the state to be the way
people are partitioned into two groups. It turns out that with this grouping process, it is impossible to have
an empty band. Each band will always have at least one person in it.

In this problem, we consider four people, Ambika, Bao, Carol and Diego, the number of possible states is
7. We label them in the table below.

State Combination
S0 {[A], [B,C,D]}
S1 {[B], [A,C,D]}
S2 {[C], [A,B,D]}
S3 {[D], [A,B,C]}
S4 {[A,B], [C,D]}
S5 {[A,C], [B,D]}
S6 {[A,D], [B,C]}

Notice that {[A], [B,C,D]} and {[D,C,B], [A]} are the same state because a band is defined by its members.

For simplicity, suppose that musical taste is unidimensional — all that matters is how much you like cow-
bells. The cowbell scores are listed below:

Name Ambika Bao Carol Diego
Score 90 85 70 40

(a) (5 pts) Based on the cowbell scores above, can some initial choice of two people lead to k-means
starting in the state S0? How about the state S1? How about the state S3? Just tell us which of
these are possible starting states and which are impossible.
Solutions:
The state S1 is impossible. There are no initial band centers resulting in the grouping {[B], [A,C,D]}.
Intuitively, it is impossible to group A,C,D together, but put B in another group, because A and B are
closest to each other. So, the only way we can start with a cluster of just B is to make B an initial
center. At that point, unless A was a band center on her own, she is going to join the B cluster. But if
A is also a band center along with B, both C and D would join B’s band and not A’s.
Meanwhile S0 and S3 are possible. If we choose Ambika and Bao as the initial band centers, the
grouping is S0. If we choose Ambika and Diego as the initial band centers, the grouping is S3.
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(b) (5 pts) To track the evolution of the band-formation process, we decide to use a state transition matrix
T . In this matrix, if Ti j = 1, it means the group state will change from S j to Si if one step of re-grouping
happens. In other words, if we compute T~e j, where~e j is the standard j-th basis vector, we will get~ei.
Consider a hypothetical three-state example:

T =

0 0 0
1 0 0
0 1 1

 .

In this example, S0 will become S1, S1 will become S2, and S2 will stay forever.
Please fill in the missing entries in the transition matrix below for the Ambika, Bao, Carol and
Diego example according to the cowbell scores given previously and the seven states as ordered
earlier.

T =



0 0 0 � 0 0 0
0 0 0 � 0 0 0
0 0 0 � 0 0 0
0 0 0 � 0 0 0
1 1 1 � 1 1 1
0 0 0 � 0 0 0
0 0 0 � 0 0 0


Solutions: The missing column indicates the state transition from S3. From S3, the two centroids are
(90+85+70)

3 = 81.67 for [A,B,C], and 40 for [D]. D will clearly stay in its solo band. Noticing that C is
30 away from D but less than 12 away from the other centroid, C will also stay in the big band. So no
one will move out from the current band, and the next state is S3.
Notice that there should be only one non-zero entry in each column (there is only one possible next
state for each state).

T =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
1 1 1 0 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.
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(c) (5 pts) According to the matrix you just created, what are all the possible final states for the
bands?
Solutions: S3 and S4. The two states are local optima. For a state transition matrix, 1s on the diagonal
indicate local optima, because these represents states that come back to themselves because no further
improvements can be made.
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9. Echos revisited (27 pts)

Recall that in the real-world, the radio waves emitted by a wireless transmitter don’t only go directly to
the wireless receiver that wants to listen to them. Instead, they propagate physically, much the same way
that sound propagates. If there is a clear line-of-sight path between the transmitter and the receiver, then
certainly the radio waves do reach the destination directly. But they also find other paths, bouncing off of
obstacles like walls, the ground, the ceiling, buildings, hills, etc. Because the speed of light is finite, all of
these echoes of the transmitted signal reach the destination with different delays.

In this problem, the wireless channel has a direct path with gain 1 and single echo td later with gain 0.8.

As we have in the 16 series so far, we will work in finite time. The total length of the signal is denoted by
n since as in the locationing labs, the transmissions are assumed to be periodic with period n. So the time-
delay td ∈ {0,1,2, . . . ,n−1} and the wireless channel’s impulse response~h has h[0] = 1 and h[td ] = 0.8 with
all other h[t] = 0.

Let the signal~x be some signal sent by the transmitter, and the signal~y be the one observed at the receiver.
The two signals are connected based on the equation~y =C~h~x, where C~h is the circulant matrix that has~h as
its first column.

Use n = 5 for this entire problem.

(a) (6 pts) Let the frequency-domain representations (coordinates in DFT basis) of ~x, ~y, ~h be ~X , ~Y , ~H,
respectively.
Express~Y in terms of ~H and ~X?
Solutions:

~Y =U∗~y (20)

=U∗C~h~x (21)

=U∗C~h(UU∗)~x (22)

= (U∗C~hU)(U∗~x) (23)

= diag(
√

5~H)~X (24)

=
√

5(~H�~X) (25)
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(b) (5 pts) Let the DFT coefficients of~h be ~H. Write down the p-th element of ~H in terms of td , p, and

n = 5.
Solutions: Let ~ek be the standard k-th basis vector.

~H =U∗~h (26)

=U∗(~e0 +0.8~etd ) (27)

= (~u0
∗)T +0.8(~utd

∗)T (28)

So, for the p-th element of ~H, we have

H[p] =
1√
5
(1+0.8e−i 2π

5 td p) (29)

(c) (5 pts) To figure out what the impulse response (~h) is, we decide to send a cosine signal ~x at the
transmitter and observe the signal~y at the receiver. Let the t-th element of~x, x[t], be cos

(2π

5 t
)
. That is,

~x =
[
cos
(2π

5 (0)
)

cos
(2π

5 (1)
)

cos
(2π

5 (2)
)

cos
(2π

5 (3)
)

cos
(2π

5 (4)
)]T

. (30)

What is the frequency domain representation (coordinates in the DFT basis) of~x?
Solutions:

~X =U∗~x (31)

=U∗
√

5
2

(~u1 + ~u4) (32)

=

√
5

2
(~e1 +~e4) (33)

=


0√

5
2
0
0√

5
2

 (34)
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(d) (5 pts) After sending the above signal~x, we observe a signal~y at the receiver. The DFT coefficients of
~y are given by

~Y =

√
5

2


0

1+0.8e−i 4π

5

0
0

1+0.8ei 4π

5

 (35)

What is the echo delay, td , of~h?
Solutions:

Y [1] =
√

5(H[1]X [1]) (36)

=
√

5
1√
5
(1+0.8e−i 2π

5 td )

√
5

2
(37)

=

√
5

2
(1+0.8e−i 4π

5 ) (38)

Therefore,

td = 2 (39)

(e) (6 pts) Please write the t-th element of the time-domain ~y from above in the form of y[t] =
α cos

(2π

5 t +θ
)
.

What is θ? What is α? (You are permitted to use the Angle function to convert a complex number into
polar coordinates and you don’t have to simplify your answers.)
Solutions:
Let γ = 1+0.8e−i 4π

5 .
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~y =U~Y (40)

=U

√
5

2
(γ~e1 + γ̄~e4) (41)

=

√
5

2
(γ~u1 + γ̄~u4) (42)

Then consider the t-th element of~y.

y[t] =
1
2
(γei 2π

5 t + γ̄e−i 2π

5 t) (43)

=
1
2
(|γ|ei( 2π

5 t+∠γ)+ |γ|e−i( 2π

5 t+∠γ)) (44)

= |γ|cos
(

2π

5
t +∠γ

)
(45)

Therefore, α = |1+0.8e−i 4π

5 | and θ = ∠(1+0.8e−i 4π

5 ).

EECS 16B, Spring 2016, Midterm 1 20



PRINT your name and student ID:

[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]
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10. Reverse-engineering (30 + 10pts)

One day, a small black box catches your eye. You find a label on the box that reads “Acme SportsRank
Proprietary Repeated Multiplier” and learn online that the black box contains some square n×n symmetric
matrix A with strictly positive eigenvalues λ0 > λ1 > ... > λn−1 > 0. You can’t look at the entries in the
matrix, but you can compute Ak~x for any ~x that you choose and any k > 20. You know nothing else about
A due to its proprietary nature. In this problem, you will find the eigenvectors of A so that you can reverse-
engineer the matrix.

(a) (15 pts) Our first task is to find the eigenvector~u0 corresponding with the largest eigenvalue λ0. To find
this eigenvector we start with some randomly generated vector~x and use the box to repeatedly multiply
~x by the matrix A. You can assume that anytime you randomly chose a vector ~x, it is guaranteed to
be able to be written as ~x = ∑

n−1
p=0 βp~up where ~up is the normalized p-th eigenvector of A with all the

|βp|> 0 for all p.
Show that

lim
k→∞

Ak~x
‖Ak~x‖

=~u0.

(HINT: Use the fact that
(

x
y

)k
→ 0 when x < y and k is large.)

Solutions: We use the notation provided in the problem description to write the vector~x as a sum of
A’s eigenvectors:

~x =
n−1

∑
i=0

βi~ui (46)

We know that this is true because A is symmetric, and therefore it has a full complement of eigenvec-
tors. Using this representation, we can write A~x as:

A~x =
n−1

∑
i=0

Aβi~ui =
n−1

∑
i=0

βiλi~ui (47)

which uses the fact that Aβi~ui = βiA~ui = βiλi~ui

Thus, when we multiply by A k times, we get

Ak~x =
n−1

∑
i=0

βiλ
k
i ~ui (48)

From this expression, we can factor out β0λ k
0 from each term in the sum to get

Ak~x = β0λ
k
0

(
~u0 +

n−1

∑
i=1

βi

β0

(
λi

λ0

)k

~ui

)
(49)
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At this point, it is just a few steps of algebra:

lim
k→∞

Ak~x
‖Ak~x‖

= lim
k→∞

β0λ k
0

(
~u0 +∑

n−1
i=1

βi
β0

(
λi
λ0

)k
~ui

)
‖β0λ k

0

(
~u0 +∑

n−1
i=1

βi
β0

(
λi
λ0

)k
~ui

)
‖

(50)

= lim
k→∞

sign(β0)(~u0 +∑
n−1
i=1

βi
β0

(
λi
λ0

)k
~ui)

‖~u0 +∑
n−1
i=1

βi
β0

(
λi
λ0

)k
~ui‖

(51)

Notice that the sign of the β0 stays because the denominator effectively has absolute values in it. At
this point, both the top and the bottom have well-defined limits and we can continue

lim
k→∞

Ak~x
‖Ak~x‖

= lim
k→∞

sign(β0)(~u0 +∑
n−1
i=1

βi
β0

(
λi
λ0

)k
~ui)

‖~u0 +∑
n−1
i=1

βi
β0

(
λi
λ0

)k
~ui‖

(52)

=
limk→∞ sign(β0)(~u0 +∑

n−1
i=1

βi
β0

(
λi
λ0

)k
~ui)

limk→∞ ‖~u0 +∑
n−1
i=1

βi
β0

(
λi
λ0

)k
~ui‖

(53)

=
sign(β0)~u0

‖~u0‖
(54)

= sign(β0)~u0 (55)

This is effectively the dominant eigenvector we started with, except with possibly a sign change. This
sign change makes no difference since the first eigenspace has been successfully recovered.
This method for finding the largest eigenvector of a matrix is called the power iteration method. It is
commonly used when the matrix A is too large to store on a computer, but the product A~x is fast to
compute because A has some known structure such as having 0 in most of its entries. For example,
Google uses the power iteration method to actually compute their PageRank scores since the entire
matrix representing the web graph is enormous.
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(b) (15 pts) The argument above tells us that we can essentially compute a normalized eigenvector as
~u0 =

Ak~x
‖Ak~x‖ by choosing a sufficiently large k. Assume that this works perfectly (neglect the effect of

k being finite). Now that we have found ~u0, we want to find the eigenvector corresponding with the
second largest eigenvalue λ1. Use what you know about the eigenvectors for a symmetric matrix as
well as the method from the previous part to describe how we could find~u1 using only black-box
access to multiplication by A. (You cannot change the matrix A — all you can do is pick vectors to
multiply by it k times. You are allowed to get a new random vector if you’d like, as well as do any
operations on it that you want involving~u0.) Argue briefly why your method should work.
Solutions: When we write a vector as a weighted sum of the eigenvectors of A (i.e. ~x = ∑

n−1
i=0 = βi~ui),

we know that the terms βi can be computed using~uT
i ~x because of the orthonormality of the~ui vectors.

Using this and the fact that we have found the first eigenvector ~u0, we can start with a new random
vector~y.
We know that~y = ∑

n−1
i=0 β̃i~ui with |β̃i|> 0 by the assertion made earlier about randomly chosen vectors.

We then project out the component of~u0 in~y by

~y′ =~y−proj~u0
~x (56)

=~y− (~uT
0~y)~u (57)

This ensures that when we write ~y′ as a sum of the eigenvectors of A, the coefficient β̃ ′0 = 0 because
~uT

0~y
′ = 0 by the way we constructed~y′. We then use the method from part (a) to find Ak~y′

‖Ak~y′‖ and by the
same argument used in part (a), this will give us ±~u1. This is because now, λ1 is the largest eigenvalue

that shows up since Ak~y′ = β̃1λ k
1

(
~u1 +∑

n−1
i=2

β̃i

β̃1

(
λi
λ1

)k
~ui

)
. All the other terms go to zero as k gets

large.

EECS 16B, Spring 2016, Midterm 1 24



PRINT your name and student ID:

(c) (Bonus 10pts) Extend the previous part to create a way to find all of the eigenvectors of A. Show how
to do the key inductive step. Assuming we have found the first i eigenvectors, describe a method
we can use to find the next eigenvector~ui+1.
Solutions: This is done in a very similar way to part (b), we start with a fresh random vector~x, and
we can assume that |βi| > 0. We know the eigenvectors ~u0, . . . ,ui, and because A is symmetric, these
eigenvectors are orthogonal. So we can subtract the projections of~x onto these eigenvectors to obtain
a new vector~x′ =~x−∑

i
k=0~uk~uT

k~x.
Consequently, we have~uT

0~x
′ =~uT

1~x
′ = · · ·=~uT

i ~x
′ = 0 while we know that |~uT

i+1~x
′|> 0.

We then use the method from part (a) to give us Ak~x′ ≈ βi+1λ k
i+1~ui+1. We can then normalize this

vector to obtain the unit eigenvector~ui+1.
Although this method for finding eigenvectors past the first dominant eigenvector works out mathe-
matically, it is not exactly how this is implemented in numerical software. The challenge is caused by
rounding errors in floating point arithmetic and because Ak~x approaches ~u0 but is never exactly equal
to the eigenvector. When the estimate for ~u0 is projected out of some vector ~x, there is still a small
component in the direction of the true eigenvector ~u0 because of the approximation. As a result, this
eigenvector will still dominate the computation Ak~x.
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[Doodle page! Draw us something if you want or give us suggestions or complaints. You can also use this
page to report anything suspicious that you might have noticed.]
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