
Optional.	Mark	along	the	line	to	show	your	feelings		 Before	exam:	[L____________________J].		
																on	the	spectrum	between	L	and	J.	 	 After	exam:	[L____________________J].	

UC	Berkeley	–	Computer	Science	
CS61B:	Data	Structures	
	
Midterm	#1,	Spring	2016	
	
This	test	has	9	questions	worth	a	total	of	40		points.	The	exam	is	closed	book,	except	that	you	are	
allowed	 to	 use	 a	 one	 page	 written	 cheat	 sheet.	 No	 calculators	 or	 other	 electronic	 devices	 are	
permitted.	Give	your	answers	and	show	your	work	in	the	space	provided.	Write	the	statement	out	
below,	and	sign	once	you’re	done	with	the	exam.	Write	the	statement	out	below	in	the	blank	
provided	and	sign.	You	may	do	this	before	the	exam	begins.	
	
“I	have	neither	given	nor	received	any	assistance	in	the	taking	of	this	exam.”	

	
__	
__	

	
	 	 	 	 	 	 	 Signature:	________________________	

	
	

Name:	
SID:	
Three-letter	Login	ID:		

	 	 Login	of	Person	to	Left:	
Login	of	Person	to	Right:		

	
Exam	Room:	 __________________	

	
	 	 	
	

	
	
Tips:		

• There	may	be	partial	credit	for	incomplete	answers.	Write	as	much	of	the	solution	as	you	
can,	 but	 bear	 in	 mind	 that	 we	 may	 deduct	 points	 if	 your	 answers	 are	 much	 more	
complicated	than	necessary.	

• There	 are	 a	 lot	 of	 problems	 on	 this	 exam.	 Work	 through	 the	 ones	 with	 which	 you	 are	
comfortable	 first.	 Do	 not	 get	 overly	 captivated	 by	 interesting	 design	 issues	 or	 complex	
corner	cases	you’re	not	sure	about.	

• Not	all	information	provided	in	a	problem	may	be	useful.		
• Unless	 otherwise	 stated,	 all	 given	 code	 on	 this	 exam	 should	 compile.	 All	 code	 has	 been	

compiled	 and	 executed	 before	 printing,	 but	 in	 the	 unlikely	 event	 that	 we	 do	 happen	 to	
catch	any	bugs	in	the	exam,	we’ll	announce	a	fix.	Unless	we	specifically	give	you	the	option,	
the	correct	answer	is	not	‘does	not	compile.’	

• The	last	two	problems	are	the	“hard”	ones.	

	 Points	 	 Points	
0	 0.5	 5	 5.5	
1	 3.5	 6	 8	
2	 2.5	 7	 0	
3	 5.5	 8	 6	
4	 2.5	 9	 6	

Total	 						40	

	 UC BERKELEY
Login: _______	

	

	 2	

0. So it begins (0.5 points). Write your name and ID on the front page. Circle the exam room. Write the
IDs of your neighbors. Write the given statement. Sign when you’re done with the exam. Write your
login in the corner of every page. Enjoy your free half point J.

1. IntList Essentials (3.5 Points).

a) Recall the definition of the IntList class:

 public class IntList {
 public int val;
 public IntList tail;
 public IntList(int val, IntList tail) {
 this.val = val;
 this.tail = tail;
 }
 }

What will be printed by the code below? Write your answer in the three blanks provided.

 public static void next1(IntList list) {
 list = list.tail;
 }

 public static IntList next2(IntList list) {
 list = list.tail;
 return list;
 }

 public static void next3(IntList list) {
 IntList temp = list;
 temp = temp.tail;
 }

 public static void main(String[] args) {
 IntList L = new IntList(1, null);
 L = new IntList(2, L);
 L = new IntList(3, L);

 next1(L);
 System.out.println(L.val); _____________
 next2(L);
 System.out.println(L.val); _____________
 next3(L);
 System.out.println(L.val); _____________
 }

CS61B MIDTERM, SPRING 2016
Login: _______

	 3	

b) Fill in the strangeInsertFront() method below such that both print statements at the bottom of
this page print out "0 1 2 3 4". You may have only one statement per line (do not add semi-colons, use
ours).

 public class IntList {
 public int val;
 public IntList tail;
 public IntList(int val, IntList tail) {
 this.val = val;
 this.tail = tail;
 }

 public void print() {
 System.out.print(val + " ");
 if (tail != null) {
 tail.print();
 }
 }

 public IntList strangeInsertFront(int x) {

 ___;
 ___;
 return this;

 }
 }

public class P2 {
 public static void main(String[] args) {
 IntList L = new IntList(4, null);
 L = L.strangeInsertFront(3);
 L = L.strangeInsertFront(2);
 L = L.strangeInsertFront(1);

 IntList L2 = L;
 L = L.strangeInsertFront(0);

 L.print(); // should print 0 1 2 3 4
 L2.print(); // should also print 0 1 2 3 4
 }
}

	 UC BERKELEY
Login: _______	

	

	 4	

2. SList Debugging and Testing (2.5 Points). Consider the SList implementation below.

public class SList {
 public class IntNode {
 public int item;
 public IntNode next;
 public IntNode(int i, IntNode n) {
 item = i;
 next = n;
 }
 }
 private static IntNode sentinel;
 public SList() {
 sentinel = new IntNode(982734, null);
 }
 public void insertFront(int x) {
 sentinel.next = new IntNode(x, sentinel.next);
 }
 public int getFront() {
 if (sentinel.next == null) {
 return -1;
 }
 return sentinel.next.item;
 }
}

Write a JUnit test that fails on the code above, but would pass on a correct implementation. You may
use any JUnit methods like assertEquals, assertNotEquals, assertTrue, assertFalse, etc.

 @Test
 public void test() {
 __;
 __;
 __;
 __;
 __;
 __;
 __;
}

CS61B MIDTERM, SPRING 2016
Login: _______

	 5	

3. ArrayHorse.com (5.5 Points).
a) Consider the code below. Assume N is odd and positive.
 public static int[][] genCoolGrid(int N) {

int[][] grid = new int[N][N];
for (int i = 0; i <= N / 2; i += 1) {
 for (int j = (N / 2) - i; j <= (N / 2) + i; j += 1) {
 grid[i][j] = 8;
 grid[N - 1 - i][j] = 8;
 }
} return grid; /* sorry, low on space, bad style, but works! */

 }
Show the return value of genCoolGrid(5) in the boxes below. Note: top left is grid[0][0].

 grid[0][0] grid[0][4]

 grid[4][0] grid[4][4]

b) Suppose we define an interface for functions on integers of a single variable called IUF. An example
implementation of this interface that squares integers is shown to the right.

public interface IUF { public class Squarer implements IUF {
 int apply(int x); public int apply(int x) { return x * x; }
} }
Write a method mapColumn that destructively applies the given function to a single column of a 2D
array. For example, if we pass in a Squarer object as f and 0 as c, we’d get back a copy of the grid with
column 0 squared.
public static int[][] mapColumn(IUF f, int[][] m, int c) {

 return m;
}
c) Write code such that veryCoolGrid is set equal to 5x5 coolGrid, but with the middle column squared.

 int[][] veryCoolGrid = __;

	 UC BERKELEY
Login: _______	

	

	 6	

4. All Natural (2.5 points). Add a new method allNatural to the SList class. After execution, the
SList should contain only numbers that are greater than or equal to zero, and in the same order that they
were in before the operation began. For example, if the list were [5, -7, 2, 6, -3, 0] the list would be [5, 2,
6, 0] afterwards. As in class, the sentinel node’s value is a dummy value and is not considered part of the
list. We have filled in part of the method for you; each line should be filled in with exactly one statement
or variable name (you may not add any semi-colons). To give you some flexibility, you may fill in
EITHER solution below. Do not fill out both. You should not use new.

 public class SList {
 public static class IntNode {
 public int item;
 public IntNode next;
 public IntNode(int item, IntNode next) {
 this.item = item;
 this.next = next;
 }
 }
 IntNode sentinel;
 public SList() {
 sentinel = new IntNode(99999, null);
 }
 public void insertFront(int item) {
 IntNode n = new IntNode(item, sentinel.next);
 sentinel.next = n;
 }

 public void allNatural() { public void allNatural() {
 IntNode a = sentinel; IntNode p = _________________;
 IntNode b = sentinel.next;
 while (_________ != null) { while (_____________________) {
 if (_____.item >= 0) { if (____________________) {
 __________________________;																																			____________________;
 __________________________; }
 } _______________________;
 ______ = ______.next; }
 } } ...
 _____________________ = null;
 } ...

Circle which of your two solutions you’d like graded. We will ONLY grade one of your solutions.
Regrades will not be accepted for mis-circled responses.
 LEFT RIGHT

CS61B MIDTERM, SPRING 2016
Login: _______

	 7	

5. EggEgg
egg

egg (5.5 points). You start with only one variable, egg, whose contents are fully described in
the following box-and-pointer diagram:

a) Draw a box-and-pointer diagram if we run the following statements in the order shown:

Statement A: for (int i = 0; i < 2; i += 1) {egg.tail = egg.tail.tail;}

Statement B: egg.tail = new IntList(egg.tail.head - 1, egg.tail);

Statement C: IntList backup = egg;

Statement D: egg = egg.tail.tail;

Statement E: backup.tail = egg;

To make grading easier, redraw your answer below in the box-and-pointer diagram provided.
You may not need all of the boxes provided. Work outside these lines will not graded. Make sure to
point the variables egg and backup at the appropriate box. Do not include boxes that cannot be reached
from either egg or backup.

b) Rearrange the 5 statements so that after execution is completed, there exists an IntList with
exactly four elements: 1->2->3->4 (not necessarily pointed to by <egg>). Write your response in the
blanks below, one letter per blank. Use each letter once.

 __________ ______ _____ ______ _____
 First operation Second Third Fourth Final

	 UC BERKELEY
Login: _______	

	

	 8	

6. Array Processing (8 Points). You are a programmer for the people’s glorious state of Oceania. Your
citizens have started trying to avoid censorship by rotating their text messages. For example, suppose a
citizen wants to use the banned word “light”, for example: “nice light today”. Instead, the citizen might
say “ght today nice li”. It is your job to write code to remove banned words. Throughout this problem
you may assume that message and banned are of length greater than zero, and that banned.length <
message.length. You may also assume that k is a valid number1. Hint: for positive integers, a % b
returns the remainder of dividing a by b, e.g. 7 % 3 is 1.

(a) Fill in the matches method below, which returns true if the message starting at k matches the

banned word, treating the message as circular. For example, if message is ['d', 'd', 'o',
'g', 'b', 'a'] and banned is ['b', 'a', 'd'], this method will return true for k = 4, and
false for all other k. You may not need all lines. If you don’t use a line, leave it blank.

private static boolean matches(char[] message, char[] banned, int k) {

for (int i = _____; i < __________________; i += 1) {

 int messageIndex = ______________________________;
 if (___) {
 ___;
 }
 }
 ___;
}

(b) Complete the helper function matchStart, which returns the start index of a banned word in a

message. For example, if message is ['d', 'd', 'o', 'g', 'b', 'a'] and banned is ['b', 'a', 'd'], this method
should return 4, because the match begins at position 4. If there is no match, return -1. You can do
this part even if you skipped part a! You may use the method from part a, even if you didn’t
actually get it right. You may assume that banned words occur only once (if at all).

public static int matchStart(char[] message, char[] banned) {
 __
 __
 __
 __
 __
 __
 __
 __
}
																																																								
1	By	valid	we	mean	0 ≤ k ≤ message.length – 1	

CS61B MIDTERM, SPRING 2016
Login: _______

	 9	

(c) Finally write the filter method, which returns the original message but with the banned word
removed. Assume that a banned word, if it appears at all, appears only once. You can do this part
even if you skipped parts a and b. You may use your methods from part a or part b in this problem.

Some examples:
• message = ['d', 'd', 'o', 'g', 'b', 'a'], banned = ['b', 'a', 'd'], return ['d', 'o', 'g']
• message = ['d', 'd', 'o', 'g', 'b', 'a'], banned = ['o', 'g'], return ['d', 'd', 'b', 'a']
• message = ['b', 'a', 'b', 'a', 'd', 'd', 'd', 'o', 'g'], banned = ['b', 'a', 'd'], return ['b', 'a', 'd', 'd', 'o', 'g'] 2

public static char[] filter(char[] message, char[] banned) {
 __;
 if (______________________________________) {
 return ______________________________;
 }
 int numToCopy = ___;
 char[] result = new char[____________________________________];
 int messageIndex = ___;

 for (int i = 0; _______________ < _______________; i ______________) {
 ___;
 ___;
 }

 return __;

}

7. Pip Digs Pep (0 Points). What Bay Area experimental music collective released a 1997 jingle for
Pepsi, associating the ubiquitous beverage with “Old outdated software getting thrown into the trash”
and a “Medicated ointment being spread on painful rash”?

																																																								
2	By	using	this	trick,	citizens	can	defeat	our	censorship	tool!	No	doubt	our	citizens	will	discover	this	trick.	To	fix	this,	
we	will	simply	apply	the	filter	function	multiple	times.	

	 UC BERKELEY
Login: _______	

	

	 10	

8. Interfaces (6 points). You may assume that you have a correct implementation of ArrayDeque and
LinkedListDeque throughout this problem, and that it implements the Deque interface.

a) Consider the Deque interface from Project 1c. Add a default method reverse that reverses the Deque.

public interface Deque<Item> {
 void addFirst(Item x); void addLast(Item x);
 boolean isEmpty(); int size();
 void printDeque(); Item get(int index);
 Item removeFirst(); Item removeLast();
 default void reverse() {
 __
 __
 __
 __
 __
 __
 __
 __
 __
 }
}

Designated fun zone. Draw something. Leave a scent on the paper. It is up to you.

CS61B MIDTERM, SPRING 2016
Login: _______

	 11	

b) Suppose we add another default method to the Deque interface:

A: default void append(Deque<Item> d) { /* code not shown */ }

Suppose that we also add the following four methods to ArrayDeque (not BadArrayDeque):

B: public void append(ArrayDeque<Item> ad) { /* code not shown */ }

 @Override
C: public void append(Deque<Item> d) { /* code not shown */ }

D: public void prepend(Deque<Item> d) { /* code not shown */ }

E: public void prepend(ArrayDeque<Item> ad) /* code not shown */ }

Consider the code below. For each call to append or prepend, tell us what happens by circling exactly
one of the provided answers. If you circle a letter (A, B, C, D, or E), you are saying that the method
with that label is called. If you circle compile-error you are saying this line will not compile. If you
circle runtime-error, you are saying the code will compile, but will crash when this line is reached. Some
possibilities may not occur (e.g. there may actually be no compiler errors).

When you’re done, you should have circled exactly 8 items.

public class DMS {
 public static void main(String[] args) {
 Deque<Integer> d = new ArrayDeque<Integer>();
 d.addLast(10);
 d.addLast(20);
 ArrayDeque<Integer> ad = new ArrayDeque<Integer>();
 ad.addLast(30);
 ad.addLast(40);

 d.prepend(d); Compile-Error Runtime-Error A B C D E
 d.prepend(ad); Compile-Error Runtime-Error A B C D E
 ad.prepend(d); Compile-Error Runtime-Error A B C D E
 ad.prepend(ad); Compile-Error Runtime-Error A B C D E

 ad.append(d); Compile-Error Runtime-Error A B C D E
 ad.append(ad); Compile-Error Runtime-Error A B C D E
 d.append(d); Compile-Error Runtime-Error A B C D E
 d.append(ad); Compile-Error Runtime-Error A B C D E
 }
}

/* Did you circle 8 things, one per line? If not, go circle 8 things. */

	 UC BERKELEY
Login: _______	

	

	 12	

9. Dynamic Method Selection and Inheritance (6 points). Modify the code below so that the max
method works properly. Assume all numbers inserted into a DMSList are positive. You may not change
anything in the given code. You may only fill in blanks. You may not need all blanks.
public class DMSList {
 private IntNode sentinel;
 public DMSList() {
 sentinel = new IntNode(-1000, ___________________________);
 }
 public class IntNode {
 public int item; /* Equivalent of first */
 public IntNode next; /* Equivalent of rest */
 public IntNode(int i, IntNode h) {
 item = i;
 next = h;
 }
 public int max() {
 return Math.max(item, next.max());
 }
 }
 public class __{
 __
 __
 __
 __
 __
 __
 __
 __
 }
 public void insertFront(int x) {
 sentinel.next = new IntNode(x, sentinel.next);
 }
 public int max() {
 return sentinel.next.max();
 }
 public static void main(String[] args) {
 DMSList dmsl = new DMSList ();
 dmsl.insertFront(5);
 dmsl.insertFront(10);
 dmsl.insertFront(20);
 System.out.println(dmsl.max());/* should print 20 */
 }
} /* end of class */ /* end of test, woo */

