Physics 110A Midterm 1

Given a charge distribution: $\rho = \frac{p_0}{r}$ for $r \le a$ and zero for r > a (ρ_0 is a constant).

a. Find the electric field inside and outside the sphere.

b. Find the electrostatic potential inside and outside the sphere. Take the potential = 0 as $r \rightarrow infinity$. (Be sure your potential is continuous at r = a!)

2. An infinitely long wire carries a current I. It is bent so as to have a semicircular detour around the origin, with radius R. Calculate the magnetic induction (B) at the origin.

3. Consider the a completely crazy unphysical vector field given by:

$$\mathbf{C}(\mathbf{r}) = \int_{V} a(\mathbf{r}') \mathbf{R} dv'$$
 Where $\mathbf{R} = \mathbf{r} - \mathbf{r}'$

a. Show that $C(\mathbf{r}) = \nabla \psi(\mathbf{r})$: where $\psi(\mathbf{r})$ is a scalar field and write an integral relation for $\psi(\mathbf{r})$ in terms of $a(\mathbf{r}')$.

b. Find $\nabla \cdot \mathbf{C}(\mathbf{r})$ (Note; it is a constant (i.e. the same at all \mathbf{r}) independent of the form of $a(\mathbf{r}')$).

c. For $a(\mathbf{r}) = a_0$ for $\mathbf{r} \le \mathbf{b}$ and $a(\mathbf{r}) = 0$ for $\mathbf{r} > \mathbf{b}$: calculate $\nabla \cdot \mathbf{C}$ at all \mathbf{r} .

d. Calculate C(r) at all r.

4. A sphere of radius a has a uniform volume charge density ρ except for a spherical cavity of radius c, at a distance of b from the center of the sphere, where the charge density is zero. Hint this problem is about superposition.

You may use the standard result for the electric field inside a uniform charged sphere:

$$\mathbf{E} = \frac{\rho}{3\varepsilon_0} r\hat{\mathbf{r}}$$
 and $V(r) = -\frac{\rho}{6\varepsilon_0} r^2$ where V=0 at r=0

Find expressions for the electric field and the potential anywhere in the cavity. It is your choice, which you find first. Just be sure that they are mutually consistent.