
C
Math 55

PROFESSOR KENNETH A. RIBET

Final Examination

May 11, 2015

11:30AM–2:30PM, 100 Lewis Hall

Please put away all books, calculators, cell phones and other devices. You may consult a
single two-sided sheet of notes. Please write carefully and clearly in complete sentences. Be
sure to explain what you are doing: the paper you hand in will be your only representative
when your work is graded. Do not worry about simplifying or evaluating expressions with
decimal numbers, factorials, binomial coefficients and the like.

At the conclusion of the exam, hand your paper in to your GSI.

The point values for the ten questions were respectively: 5, 4, 5, 5, 4, 5, 5, 4, 4, 5. The
maximum possible score was 46.

1a. Show that

(
−n
10

)
=

(
n + 9

10

)
when n is a positive integer.

This was intended to be straightforward. See Example 8 on page 540 of the book for an

explanation of the identity

(
−n
r

)
= (−1)r

(
n + r − 1

r

)
. In this case, r = 10 is even, so the

term (−1)r is just 1.

b. Prove that 332 − 232 is divisible by 13

An equivalent statement is that 332 and 232 coincide mod 13. Now 32 = 9 and 22 = 4. Since
these are negatives of each other mod 13, their squares are equal mod 13: 34 ≡ 24 (mod 13).
Since 32 is a multiple of 4, the 32nd powers agree mod 13 as well.

2. Let S be the set of 5-card poker hands with the uniform probability distribution. Let
X : S → { 0, 1, 2, 3, 4 } be the random variable that assigns to each hand the number of aces
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in that hand. What is the expected value of X? (Once again: you need to explain your
answer; writing down a number is not sufficient.)

Pretty much by definition, E(X) = 0 · a0 + 1 · a1 + 2 · a2 + 3 · a3 + 4 · a4, where ai is the
probability that a hand has i aces. If you write down the ai correctly, you get an expression
involving binominal coefficients that one can calculate to be 5/13. (By my rules, you could
write everthing down in terms of binomial coefficients, walk away and get full credit.)

A more thoughtful way of proceeding is to imagine that poker hands are ordered so that there
is a first card, second card and so on in the hand. There’s actually a standard order to a deck
of cards; this is the order in which cards are arranged when you open up a brand new deck.
Hence there’s an unambiguous way of arranging the hand. You can let Xj (j = 1, · · · , 5) be
the random variable whose value is 1 if the jth card is an ace and 0 otherwise. Then clearly

X = X1 +X2 + · · ·+X5, so that E(X) =
∑

E(Xj). Since the probability that the jth card

is an ace should be
1

13
, we should get E(X) =

5

13
. If you write an explanation like this, you

get full credit as well.

3. Let G be the simple graph whose vertices are the bit strings of length 4, two bit strings
being connected by an edge if and only if they differ in exactly one place.

This problem appears as question #9 on the spring, 2013 final exam. Check the course web
site for the solution that I wrote two years ago.

a. Show that G is bipartite and that G has no circuits of length three.

b. Is G planar?

4. Ivet has a bag of 12 biased coins. Six of these come up heads 3/5 of the time, while the
other six come up tails 2/3 of the time. Ivet reaches into the bag, pulls out a coin at random
and tosses it. The coin comes up tails. What is the probability that she pulled out a coin
that is biased toward tails?

This is more or less the biased coin problem on the second midterm, but I changed the
numbers and the wording a bit. Let E be the event that Ivet pulled out a tail-biased coin,
so that E is the event that she pulled out a head-biased coin. Let F be the event that
she pulls out a coin, flips it and gets “tails.” We seek to calculate p(E|F ). The formula

that we should apply is p(E|F ) =
p(F |E)p(E)

p(F )
. Now p(F ) = p(F ∩ E) + p(F ∩ E) =

p(F |E)p(E) + p(F |E)p(E). We can plug in this formula for p(F ) and get

p(E|F ) =
p(F |E)p(E)

p(F |E)p(E) + p(F |E)p(E)
.
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But p(E) = p(E) = 1/2, so we can simplify a bit:

p(E|F ) =
p(F |E)

p(F |E) + p(F |E)
.

Now p(F |E) = 2/3 and p(F |E) = 2/5. Thus my answer is 5/8. Your mileage may vary.

5. Suppose that f : A→ P(A) is a function from a set to its power set. Let

B = { b ∈ A | b 6∈ f(b) },
and let c be an element of A. Show that f(c) 6= B by deriving a contradiction from the
assumption f(c) = B.

This problem was #4 on the first midterm. See the course web site for my solution to the
problem. (Watson Ladd discussed this problem in the Tuesday review session last week as
well.)

6a. Suppose that n is a positive integer. Prove that there are two different elements of the
sequence

0!, 1!, 2!, . . . , n!

that leave the same remainder when divided by n.

This is a clear application of the pigeonhole principle.

Whoops, it would have been, except for the fact that 0! = 1!. Anyone who notices this
and applies this equality to parts (a) and (b) gets five free points. Sometimes the best-laid
plans. . . .

You have n + 1 numbers and we are discussing their residues mod n. There are only n
possible residues mod n, so two of the numbers will have the same residue. Having the same
residue is a synonym for leaving the same remainder on division by n.

b. Show that there are integers i and j with 0 ≤ i < j ≤ n such that j! − i! is a multiple
of n.

Two numbers have the same residue mod n is and only if their difference is a multiple of n.

7. Find the number of surjective (onto) functions from the set { 1, 2, 3, 4, 5, 6 } to the set
{ a, b, c }.

This is an annoying inclusion–exclusion problem. I more or less did it on the board at the
review session last Thursday. (When I did it, the source set had five elements instead of six,
but that’s no biggie.)

Let S be the set of all functions { 1, 2, 3, 4, 5, 6 } −→ { a, b, c }. Then S has 36 elements
because there are three choices for the images of each element of the source set. Let A
be the set of functions whose images do not contain a. Similarly define B and C. Then
the set A ∪ B ∪ C is the set of non-surjective functions from the source set to the target
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set. Accordingly, the number that we seek is |S| − |A ∪ B ∪ C|. Thus we need to calculate
|A ∪B ∪ C|, which we can do by inclusion exclusion:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.
As I explained on Thursday, A ∩B ∩ C is the null set because it’s the set of functions from
{ 1, 2, 3, 4, 5, 6 } to { a, b, c } whose images contain none of a, b, c. The sets A, B and C each
have 26 elements, while the three double intersections each have 16 = 1 element. Thus the
answer is apparently

36 − 3 · 26 + 3 · 16 = 540.

Of course, there’s no need to calculate the final answer as 540.

8. Bob is learning about RSA encryption. To try a numerical example, Bob chooses the
small prime numbers p = 15213907 and q = 98804683, and the encryption exponent e =
461442496988431. Running the extended Euclidean algorithm, he finds the equation

1 = 1234567e− 378978(p− 1)(q − 1).

Bob now wishes to find a decryption exponent, a positive integer d such that

(M e)d ≡M (mod pq)

for all integers M such that gcd(M, pq) = 1.

Help Bob by supplying him with the sought-after integer d and write a paragraph that
explains to him why this d will work.

The decryption exponent is the inverse of the encryption exponent, modulo (p − 1)(q − 1).
Mod this product, we have (from the displayed Euclidean equation) 1 ≡ 1234567e, so that
the inverse of the encryption exponent e is 1234567. We take d = 1234567. You should tell
Bob that (M e)d ≡ 1 mod p by Fermat’s Little Theorem; similarly (M e)d ≡ 1 mod q. Hence
(M e)d− 1 is divisible by p and by q. Since these two divsors are relatively prime, (M e)d− 1
is divisible by their product, pq. Thus we have the displayed congruence that you were to
justify to Bob.

9. Establish the congruence

fn ≡ 3 · 8n − 3 · 4n (mod 11)

for n ≥ 0. Here, fn is the nth Fibonacci number.

This problem was intended to be a straightforward proof by (strong) induction. For n = 0,
the right-hand side and the left hand side are both 0. For n = 1, the right-hand side is
3(8 − 4) = 12 ≡ 1 and the left-hand side is 1 as well. These are our two base cases. For
n ≥ 0, we have

fn+2 = fn+1 + fn ≡ 3(8n+1 + 8n)− 3(4n+1 + 4n)

mod 11. Thus it suffices to establish the two congruences (mod 11)

8n+2 ≡ 8n+1 + 8n, 4n+2 ≡ 4n+1 + 4n.

Because all terms in the left-hand congruence contain a factor 8n, the left-hand congruence
will follow if we can show that 82 ≡ 8+1 (mod 11); similarly, the right-hand congruence will

4



follow from 42 ≡ 4 + 1 (mod 11). Both of these latter congruences can be checked easily: 11
divides 64− 9 = 55 and 16− 5 = 11.

10a. In how many different ways can 20 identical cookies be distributed among six distinct
children if each child receives at least two cookies?

Give each child two cookies. Then 12 have been given away and 8 remain to be distributed to

the six children. This is a full bore bagel (= stars and bars) problem; the answer is

(
8 + 5

5

)
.

It’s also a fully boring problem—sorry.

PS: The phrase “distinct children” was lifted from Example 11 on page 543 of the book. It’s
certainly not very appealing.

b. In how many different ways can 20 distinguishable cookies be placed into three indistin-
guishable boxes?

You might sidle up to the problem this way. Suppose that the boxes are labeled (say “A,”
“B,” “C”). Then there are three ways to place the first cookie in a box, three ways to place
the second cookie in a box, and so on. The number of ways to place the 20 cookies into
three labeled boxes is 320. Now you might say that there are 3! = 6 ways to label the boxes,
so we should divide by 6 and get 320/6 as our answer. That’s a pretty good answer, but it’s
not a whole number, so something is amiss!

To see what’s wrong, think what happens if you label one of the boxes, say “A,” and throw
all 20 cookies into box A. Then you can label the other two (empty) boxes “B” and “C” or
“C” and “B,” and both choices lead to the same way of placing the 20 cookies into labeled
boxes. However, this problem arises only when two of the three boxes are empty. If at
least two of the boxes receive cookies, then the six ways of labeling the boxes lead to six
different ways of assigning cookies to labeled boxes. It seems to me that we should separate
out the three ways of throwing all cookies into a single labeled box; these three ways lead
to a single way of placing the cookies into indistinguishable boxes. The other 320 − 3 ways
to putting cookies into labeled boxes can be converted into ways of putting cookies into
indistinguishable boxes by the division that we contemplated in the paragraph above. My
answer is thus

320 − 3

6
+ 1 =

319 + 1

2
= 581130734.

You can compare this problem with Example 10 on page 430 of the book: “How many ways
are there to put four different employees into three indistinguishable offices, when each office
can contain any number of employees?” It’s the same as my problem, but with 20 replaced

by 4. My answer
319 + 1

2
then gets replaced by

33 + 1

2
= 14, which is the same as Rosen’s

answer. However, the book doesn’t try to discuss the problem conceptually; instead, it just
lists the 14 possibilities: “Counting all the possibilities, we find that there are 14 ways to
put four different employees into three indistinguishable offices.” I think that the author
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could have done better. (Note: there’s no need for you to calculate the fraction
319 + 1

2
as

581130734.)
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