ME 109 Heat Transfer Midterm Exam

October 28, 2015 10:10 - 11:00 am

Name: .							11.1	2	•	•	12	Ŷ						1		*	
SID#:.			٠	٠		9		·	•		*								•		٠
												D	is	cu	SS	io	n	Τι	1/	Ą	(d)

Comments

Write solutions on this exam booklet.

Notes: Permitted 2 pages (each 8.5" x 11", both sides).

Calculator permitted.

3 questions, equal weight.

Reasonable approximations are fine (no penalty for up to 10% error).

Show your work.

TABLE A. 1 Thermophysical Properties of Gases at Atmospheric Pressure⁹

Т (К)	$\frac{\rho}{(kg/m^3)}$	(kJ/kg⋅K)	μ·10 ³ (N·s/m ²)	ν - 10 ⁵ (m ² /s)	k·103 (W/m·K)	(m ² /s)	Pr	
Air. At	= 28.97 kg/l	kmo1						
100 150	3.5562 2.3364	1.032	71.1 103.4	2.00 4.426	9.34 13.8	2.54 5.84	0.786	
200 250 300	1.7458 1.3947 1.1614	1.007 1.006 1.007	132.5 159.6 184.6	7,590 11,44 15,89	18.1 22.3 26.3	10.3 15.9 22.5	0.737	

Some Correlations for Flat Plates.

Correlation	Geometry	Conditions*						
$\delta = 5x R c_x^{-1/2}$	Flat plate	Laminar, T _f						
$C_{f,x} = 0.664 Re_x^{-1/2}$	Flat plate	Laminar, local, T_f						
$Nu_x = 0.332Re_x^{1/2}Pr^{1/3}$	Flat plate	Laminar, local, T_f , $Pr \approx 0.6$						
$\delta_t = \delta P r^{-1/3}$	Flat plate	Laminar, T_f						
$\overline{C}_{f,x} = 1.328Re_x^{-1/2}$	Flat plate	Laminar, average, T_f						
$\overline{Nu_s} = 0.664 Re_s^{1/2} Pr^{1/3}$	Flat plate	Laminar, average, T_f , $Pr \ge 0.6$						
$Nu_x = 0.565 Pe_x^{1/2}$	Flat plate	Laminar, local, T_f , $Pr \leq 0.05$, $Pe_s \geq 10$						
$C_{fx} = 0.0592 Re_x^{-1/5}$	Flat plate	Turbulent, local, T_f , $Re_1 \lesssim 10^8$						
$\delta = 0.37x Re_x^{-1/5}$	Flat plate	Turbulent, T_f , $Re_4 \lesssim 10^8$						
$Nu_3 = 0.0296Rc_3^{4/5}Pr^{1/5}$	Flat plate	Turbulent, local, T_f , $Re_1 \le 10^8$, $0.6 \le Pr \le 60$						

Problem 1. (20 pts)

Consider a transient finite-difference scheme for T(x,t) of a strip of length L, thickness D, and width W.

The upper surface (y=D) is heated with a laser of specified heat flux $q_L(x)$ [W/m²].

The lower surface (y=0), as well as the surface at (x=L) experience convection to a fluid at constant T_{∞} and spatially-varying h(x).

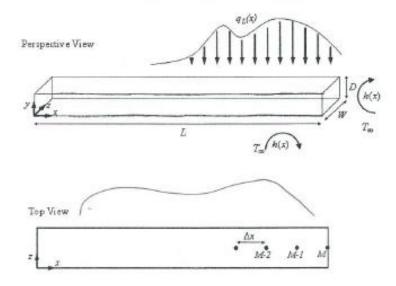
The surfaces at x=0, z=0, and z=W are insulated.

It is appropriate to treat the bar as one-dimensional with uniform spacing between points, $\Delta x = const.$

(a: 20 pts) Write down an appropriate finite difference equation for the last node, M.

Notes:

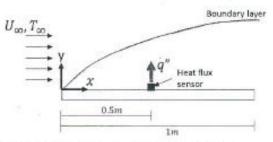
You may use any reasonable scheme (explicit or implicit). You are not required to simplify the final algebraic form.



Problem 2. (20 pts)

One type of gas-flow velocity meter works by relating the heat transfer rate q'' to the free-stream velocity U_{∞} .

Consider such a velocity meter made of a flat plate of length L=1 m and held at a constant temperature T_s =200 K. The flowing gas is air at a temperature T_{∞} =100 K. There is a small heat-flux sensor at the location $x_s = L/2 = 0.5$ m.

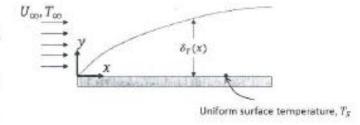


(a: 5 pts) The flow meter is specified by the manufacturer to work for U_{∞} in the range ~10 m/s to ~100 m/s. Does this device operate in a laminar or turbulent flow regime? You must justify your answer.

(b: 15 pts). For a certain air flow, the measured heat flux at the small sensor is $q''(x_s) = 20,000 \text{ W/m}^2$. For this condition, find U_{∞} . Give a numerical value.

Problem 3. (20 pts)

A flat plate experiences a novel type of forced convection. As usual, x and y are measured from the leading edge, T, is the plate surface temperature, and T_{∞} is the free-stream fluid temperature, and we know that the hydrodynamic and thermal boundary layers are both reasonably thin. However, the flow field u(x, y) is different than anything you have studied previously, and is *not* given to you. Fortunately, you are provided the following solution for the temperature field,



$$T(x, y) - T_{\infty} = (T_x - T_{\infty}) \cdot \exp\left(-\frac{y}{\gamma x^{1/4}}\right)$$

where γ is a given constant with units of [(length)^{3/4}].

(a: 5 pts) From the given information, obtain a simple expression for the shape of the thermal boundary layer, $\delta_{\tau}(x)$. (Define the thermal boundary layer using a convenient "99%" type definition, just like the Blasius convention, i.e., the height at which the local fluid temperature is within 1% of the free-stream value.)

(b: 10 pts) From the given information, obtain a simple expression for the Nusselt number, Nus.

(c: 5 pts). Now you are told that $\gamma = 10 \frac{v^{1/2} \alpha^{1/4}}{U_{\infty}^{3/4}}$, where v is kinematic viscosity and α is thermal diffusivity.

Use this information to express your result from (b) in the functional form $Nu_* = f(Re_*, Pr)$.