Exam Date: December 18

E7 Final Exam, Fall 2013

E7 Final Exam

NAME

SID

SECTION

LAB

1 or 2 (please circle your lecture section)
#11: TuTh 810 | #12: TuTh 10-12 | #13: TuTh 12-2 | #14: TuTh 2-4
#15: TuTh 4-6 #16: MW 8-10 #17: MW 10-12 | #18: MW 2-4
#19: MW 4-6 | #20: TuTh 10-12° | #21: MW 3-5 * | #22: TuTh 4-6"

(please circle your lab section)

*in Wheeler

Problem Points Points
12 10
13 10
14 10

TOTAL 180

Problem Points Points
1 20
2 10
3 13
4 12
5 10
6 10
7 12
8 9
9 18

10 18
11 18

Carefully read and follow these instructions:

N WD -

There should be 31 pages.

1 of 31

The last pages contain the syntax of some useful functions.
Write your name on the top right corner of each page.
Start answering the exam only when instructed to do so.
Record your answers only in the spaces provided.

You may not ask questions during the exam.
You may not use any electronic devices.

You may use three 8.5x11 sheets (6 pages) of handwritten notes.
Count the number of pages before the start of the exam.

Name:

E7 Final Exam, Fall 2013

1. For each code-block, follow the instructions given.

(a) Write the value of V after the code has executed. Write Error if the code will not execute.

begin code
1 clear

2 A =3.7;

3 V=[2, 4, 6; 1, 5: 3]’

4 V(V<A) = 0;

end code

(b) Write the value of V1, V2 and V3 after the code has executed. Write Error if the code will

not execute.
begin code

1 clear
2 S(1) .Name

'UCB'; S(1).Pop = 35700;

3 S(2) .Name 'UMich'; S(2).Pop = 43400;
4 S(3) .Name 'GTech'; $S(3).Pop = 21500;
5 | V1 = [S.Pop];

6 V2 = [S.Name];

7 V3 = size({S.Name})

end code

(c) Write the value of M after the code has executed. Write Error if the code will not execute.

begin code
1 clear
2 M= [];
3 for k=3:-1:0
4 M= [M repmat(k,[1 k])];
5 end

end code

2 of 31

Name:

E7 Final Exam, Fall 2013

(d) Consider function E7£1, contained in file E7f1.m, listed below.

begin code

function T = E7f1(T,N,k)
for i=1:numel(T)
T(i).(N{k}) = T(i).(N{k}) (end:-1:1);
end
end code

Write the value of V after the code below has executed. Write Error if the code will not
execute.

begin code

>> clear

>> S(1) .Name 'UCB'; S(1).Pop = 35700;
>> S(2) .Name 'UMich'; S(2).Pop = 43400;
>> S(3).Name = 'GTech'; S(3).Pop = 21500;
>> fieldl = 'Pop';

>> test = S(1).(fieldl)

test =

35700

>> S = E7f1(S,fieldnames(S),1);

>> V = S(3) .Name;

end code

(e) What is your best guess of the value of N after executing the code below?

begin code

clear
A = rand(1,1000);
N = numel (find(A>0.8));

end code

3 of 31

Name: E7 Final Exam, Fall 2013

2. Consider a linear system of two equations with two unknowns

anry +apre = by
a1y + azgry = by

John's code to solve for x given values for a and b is

begin code

1 function [x] = solveByJohn(all,al2,a21,a22,bl,b2)
2 x = [all, al2; a21, a22]\[b1;b2];

end code

Esme’s code to solve for z is direct, eliminating one variable, solving for the remaining, and then

repeating the process.

begin code

1 function [x1,x2] = solveByEsme(all,al2,a21,a22,bl,b2)
2 x1 = (a22*bl-al2+%b2)/(a22*all-al2*a21);

3 x2 = (a21#*bl - alilx*b2)/(a21*al2 - all*a22);

4 x = [x1;x2];

end code

Their manager writes a testing program to check the correctness of the programs by comparing

their answers. It is shown below:

begin code

1 nTrials = 10000;
2 nEqual = 0;

3 for i=1:nTrials

4 all = randn; al2 = randn; a2l = randn; a22 = randn;
5 bl = randn; b2 = randn;

6 xJ = solveByJohn(all,al2,a21,a22,bl,b2);

7 xE = solveByEsme(all,al2,a21,a22,bl,b2);

8 nEqual = nEqual + isequal(xJ,xE);

9 end

10 disp(['Fraction match = ' num2str(nEqual/nTrials)]);

end code

Unfortunately, the test appears to illustrate some unreliable results, as the fraction of tests that
match is somewhat low. Their manager concludes that “one of you should be fired, since at least

one of these functions is wrong.”

Who should be fired: John, Esme or the manager? Why?

4 of 31

Name: E7 Final Exam, Fall 2013

4. Consider the following second order ODE

(a) This second order ODE can be written as a pair of coupled first order ODEs. Defining y; = z
and yo = &, write below a corresponding equivalent pair of coupled first order ODEs and
initial conditions:

no= y1(0) =

Yo = y2(0) =

(b) Use the Euler integration method with a step-size h = 1 to integrate the pair of coupled first
order ODEs and fill out the empty entries in the table below.

th y1(tk) y2(tk)
0 1 1

1

2

3 -1

7 of 31

Name: E7 Final Exam, Fall 2013

5. The contents of a file myfuncE13.m are shown below.

begin code

1 function [y1l,y2] = myfuncE13(a,b,c)
> | y1 = LOCALf1(b,a);
3 y2 = @(x) c(LOCALf2(a*x, b+x));

5 function H = LOCALf1(x,y)
6 H=x-y72;

8 function K = LOCALf2(z,q)
9 | K= [z+q, z-ql;

end code

The following is executed in command window

begin code

1 >> [A,B] = myfuncE13(2,4,0sqrt);
2 >> C = B(4);

end code

(a) After executing the code, what is the value of A?

(b) After executing the code, what is the value of C?

8 of 31

Name: E7 Final Exam, Fall 2013

6. Use induction to prove that 13™ — 7™ is always divisible by 6 for any integer n > 1.

9 of 31

Name: E7 Final Exam, Fall 2013

7. Horner’s method is an algorithm to evaluate the value of a polynomial function. Consider a n'th
degree polynomial

2

p(z) = apx™ + 12"V + an_oz" 24 a1z + a,

where a,, - -+ ,ag are real numbers, Rewrite p equivalently as
n—1 n—2
p(z) = (anr + an_1)x + ap—2x + a1+ ap

Note that this has the appearance of an (n — 1)'th degree polynomial (although the coefficient
associated with the 7! term is itself dependent on x).

To evaluate p(zg) (for a specific value z(), we can define the (n — 1)'th degree polynomial
q(z) = (anxo+ an—1)33n_1 + an_grr"_Q + a1z +ap

Note that the degree of ¢(x) is less than the degree of p(z) and moreover, p(xzg) = q(xo).
Repeating this procedure recursively, we can define a sequence of k" order polynomials Py (z) for
k=n,n—1,---,0,

P,(x) = a, 2"+ 12" N Ay 2+ a1z + ay
bn

Po_1(x) = (bpxo+ an—1) 2" Va0 24 - agz + ay
—_———
bnfl

Pyo(x) = (bp_170+ an—2)a™ 2+ a1z + a,

Vv
brn—2

Po(z) = (biwo+ ao)
bo

which all satisfy P, (z¢) = p(xq).

The recursive function Horner shown below is designed to define the Py (x)’s polynomials recur-
sively, in order to finally evaluate p(zg) = Py(zo) = bo. Input and output arguments of Horner
are:

e P=ay,ay 1, -+, a0 isthe 1 x (n+ 1) array containing the coefficients of p(z).
e x0 is a specific value of x.

e pval is p(x0).

Complete the 3 incomplete lines of code in the next page.

10 of 31

Name: E7 Final Exam, Fall 2013

begin code

1 function Pval = Horner(P, xO)

3 if

10 P = [
11
12
13
14 Pval = Hormner()
15
16 end

end code

11 of 31

Name:

E7 Final Exam, Fall 2013

8.

(a) This code block produces the figure as shown below

begin code

1 clf; clear
2 load e7Data;

3 plot(xData, yData, 'o'); hold on
end code
Data Set
7 T T T T T T T
6L O O _
o)
5r J
o)
at i
>
o O
3t o 1
2 4
o)
1+ @] B
D | | | | | | |
-15 -1 -05 0 0.5 1 15 2
X

The following additional code modifies the figure. In the figure above, make

modification after both code blocks are executed.

a

sketch of the

1 A = [ones(numel(xData),1) xData];
2 b = yData;
3 c = A\b;
4 xVec = linspace(min(xData) ,max(xData),100);
5 plot(xVec, c(1)+c(2)*xVec, 'k');
6 hold off
end code

begin code

12 of 31

Name: E7 Final Exam, Fall 2013

(b) This code produces the figure as shown below
begin code

1 clf; clear

2 load e7Data;

3 plot(xData, yData, 'o'); hold on

end code

Data Set
7 T T T T T T T

O

O

The following additional code modifies the figure. In the figure above, make a sketch of the
modification after both code blocks are executed.
begin code

1 A = [ones(numel (xData),1) xData xData."2];
2 b = yData;

3 c = A\b;

4 xVec = linspace(min(xData) ,max(xData),100);

5 plot (xVec, c(1)+c(2)*xVec+c(3)*xVec. 2, 'k');
6 hold off

end code

13 of 31

Name: E7 Final Exam, Fall 2013

(c) This code produces the figure as shown below
begin code

1 clf; clear

2 load e7Data;

3 plot(xData, yData, 'o'); hold on

end code

Data Set
7 T T T T T T T

O
O

O

-1.5 =1 -05 0 0.5 1 1.5 2

The following additional code modifies the figure. In the figure above, make a sketch of the
modification after both code blocks are executed.
begin code

1 xVec = linspace(min(xData) ,max(xData),100);

2 ySpline = interpl(xData,yData,xVec, 'spline');
3 plot(xVec, ySpline, 'k');

4 hold off

end code

14 of 31

Name:

E7 Final Exam, Fall 2013

9. Figure 1(a) shows the classic Towers of Hanoi puzzle consisting of three pegs and a number of
disks of varying sizes. The objective of the puzzle is to move the ordered stack of disks from the
starting peg (peg A in Fig. 1(a)) in to another peg while obeying the following rules:

1. A move consists of taking the topmost disk from one peg and transferring it to another peg.
2. You may only move one disk at a time.
3. You may not place a disk on top of a smaller disk.

Configuration 1:
N

Configuration 2:

Configuration 3:

ek
==

=

B
1

=

o —

T
—1
=
—1

e

=

(b) Moving an N + 1 Stack of Disks from A to C

Configuration 4:

B

(a) Initial Configuration

C

Figure 1: Towers of Hanoi puzzle

(a) Write the 5 lines of code of the function called HanoiSteps, which recursively computes

10

11

the minimum number of steps required to solve the Towers of Hanoi puzzle for a stack of NV
disks. To do so, read the following hint:

Define S(IN) to be the minimum number of steps needed to move N disks from one peg to
another. Now, consider N + 1 disks: In Configuration 1 of Fig. 1(b), disk NV + 1 is shown
in gray at the bottom of the initial stack. It takes S(IV) steps to get from Configuration 1
to Configuration 2. It takes only one step to get from Configuration 2 to Configuration 3.
Finally, it takes S(IV) steps to get from Configuration 3 to Configuration 4. The number of
steps taken to get from Configuration 1 to Configuration 4 is equal to S(N + 1).

begin code

function Steps = HanoiSteps(N)

end code

15 of 31

Name:

E7 Final Exam, Fall 2013

(b) Complete the missing code of the recursive function Hanoi, which will sequentially display

10

11

12

13

14

15

16

17

18

19

20

21

the steps required to solve the Towers of Hanoi Puzzle. The syntax of the function Hanoi is
begin code

Hanoi(N, BPeg, IPeg, Fpeg)

end code

Input arguments:

e N: number of disks

e BPeg: char denoting where the stack of disks is at the beginning (e.g. >A’ in Fig. 1(b)).
e IPeg: char denoting the third (extra) peg (e.g. *B’ in Fig. 1(b)).

e Fpeg: char denoting the final location of the stack (e.g. *C’ in Fig. 1(b)).

Shown below is a test case for the function Hanoi
begin code

>> Hanoi(2,'A','B','C")

Move one disk from peg A to B
Move one disk from peg A to C
Move one disk from peg B to C

end code

begin code

function Hanoi(N, BPeg, IPeg, FPeg)
if
disp(
else
end
end code

16 of 31

Name:

E7 Final Exam, Fall 2013

10. Assume that the following is known about a real valued function of a single real variable F'(z).

(a)

(b)

The value of F(z,) = F, is known for z = x,.

The derivative of F' with respect to z, f(z) = %(m), is known for all . Moreover, you

have access to the function Fder with syntax *

begin code

fder = Fder(x1)

end code

The output argument fder is the derivative of the function F'(x) at the input argument x1.

Complete the code below for the function Func, which computes the value of the function
F(z) for a given value x;. Input and output arguments are

e x1: specified value of x;.

e Fderh: handle to function Fder, which evaluates the derivative f(x) = dgf).

e xo, Fo: known values of x, and F, = F(z,).
e F1 calculated value of F(x1).

begin code

function F1 = Func(x1l, Fderh, xo, Fo)

F1 =

Assume now that, instead of knowing the the exact value of the function F'(x) at a single
point, its exact value is known at several points. Thus, assume that the following two arrays
of size N x 1 are available:

e Xarray — [X01; X0g; - ;Xoy]
e Farray = [F(xo,); F(x02); ---;F(xo,) |, where F(x,,) means the exact value of
the function F(z) at © = x,, (remember that F'(x) is unkown).

Complete the lines of code for the function FuncA, which computes the value of the function
F(zy) for a given value x; in a computationally efficient manner, given that you have access
to the arrays Xarray and Farray and the function Fder.

The first two input arguments and output argument of FuncA are the same as those of the
function Func in part 10a. You can use less than three lines, but should not use more.

*i.e. the file Fder.m is stored in a directory in your Matlab path.

17 of 31

Name:

E7 Final Exam, Fall 2013

10

begin code

function F1 = FuncA(x1, Fderh, Xarray, Farray)

(c) We now want to find a zero of the function F(x) (i.e. the value z such that F(z) = 0)

using a modified Newton-Raphson algorithm. Assume that you have access to the function
Fder, a working function FuncA, and the arrays Xarray and Farray.

Complete the missing or incomplete lines of code for the function NewtonDer in the next
page, which determines the approximate location of a zero of F(x).

Input arguments:

e z0: initial guess of the zero of F'(z).

e Tol: relative error tolerance value.

e iterMax: maximum number of iterations allowed.

e FuncAh: handle to function FuncA described in part 10b.

e Fderh: handle to function Fder, which evaluates the derivative f(x) = ‘ﬂ;gf).
e Xarray = [Xo,; X025 - Xy]
e Farray = [F(xo,); F(x02); -+ ;F(xo,) |.

Output arguments:

e z: final estimate of the root of F'(x).
e Fz:The calculated value F(z).

The algorithm should stop when either of the following conditions are satisfied

|2k — 2k—1]

< Tol or k > iterMax
|2k

with k& > 1 is the &' iteration of the algorithm and xj, is the zero estimate at step k. Assume
that Fder(x) # 0 for all x and z; # O for all k.

18 of 31

Name:

E7 Final Exam, Fall 2013

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

begin code

function [z, Fz] = NewtonDer(z0, Tol, iterMax,
FuncAh, Fderh, Xarray, Farray)

zold = zO0; % Set z(0) = z0
RelError = Tol + 1; % Set RelError(0) > Tol
k = 1; % Set iteration counter to 1

yA Check for stopping conditions
while (RelError > Tol) && (k < iterMax)

Fzold =

end

end code

19 of 31

Name: E7 Final Exam, Fall 2013

11. After totaling the scores of the E7 class, the probability density function (PDF) of the scores
pg(x) > 0 was determined for zmin < « < Tax, With Zyin and zmax being respectively the
minimum and maximum scores and

Tmax
/ pg(z)dr =1.
T

min

A plot of pg(z) with zmin = 10 and Zyax = 100 is shown below.

(a) Assume that you have access to the Matlab function E7ScoresPDF, with syntax
begin code

1 ps = E7ScoresPDF(x)

end code

where x is a particular score and ps = p(x).

E7 PDF
0.018 T T

0.016

0.014

0.012

0.01

ps(x)

0.008

0.006

0.004

0‘002 Il Il Il Il Il Il Il Il
10 20 30 40 50 60 70 80 20 100

Figure 2: PDF of E7 Scores

20 of 31

Name:

E7 Final Exam, Fall 2013

10

11

12

Write a Matlab script that will produce a similar figure as Fig. 2 including annotations .

begin code

(b) In addition to the information in part 11a, assume that the following variables have been

defined and are accessible in your workspace.

e xmin: the minimum E7 score Zpin.
e xmax: the maximum E7 score Zinax.
e xhat: the mean or expected value E{z} = [xp,(x)dx of the E7 scores.

e Probxhat: the probability of attaining a score that is less than or equal to the mean,
i.e. Probxhat = Prob{z < xhat}.

Write a 2-line Matlab script to determine the standard deviation of the E7 scores.

begin code

TYou do not have to specify the tick locations, fontsize, Fontweight, or linewidth.

21 of 31

Name:

E7 Final Exam, Fall 2013

(c) Several students want to know what is the lowest score that they have to obtain in order to

10

11

get an A+ in E7. The professors teaching E7 have decided that a student must obtain a
score that is higher than or equal to 95% of all other scores, in order to receive an A+.

Denote xAP to be the lowest score that will receive an A+ in E7, i.e.
Prob{z < xAP} = 0.95

Note that Prob{z < A} is defined as

A
Prob{z < A} = / ps(z)dx .
xmin
Using the functions, E7ScoresPDF, FuncA and NewtonDer in Problem 10 and all of the
above information, the professors determined that xAP = 97.

Assume that you have access to the same functions (i.e. files E7ScoresPDF.m, FuncA.m
and NewtonDer .m are stored in directory that is in your Matlab path) and all of the above
information.

In the space below, write a Matlab script to compute xAP using ONLY the information and
functions described above.

begin code
Tol = 1e-10; iterMax = 100; AP = 0.95;

22 of 31

Name:

E7 Final Exam, Fall 2013

13. Warning: This problem is related to but different from a homework problem.

Consider the following heat transfer problem. The temperature of a metallic bar is denoted
T(x). The temperature is a function of position (x), due to various heat sources, conduction
and radiation. Regarding notation, T'(z) denotes the 1st derivative of T with respect to z,
and similarly, T'(z) represents 2nd derivative of T with respect to x. The differential equation
governing the temperature is

T(x) = —a (T — T(x)) — B (T, — T*(x)) (1)

where «, 5 and T, are known constants. Let y denote the 2 x 1 vector

[

(a) Convert equation (1) into a set of coupled, first-order ordinary differential equations (ODEs)

10

in the variable y and complete the function temperaturebar.m shown below so that ode45
can be used to solve this system of differential equations. Note that «, 5 and T, are
constants, and have been defined.

begin code

function yprime = temperaturebar(x,y)
alpha = 0.05;
beta = 2.7e-9;
Tinf = 200;
yprimel =
yprime2 =
yprime =
end code

(b) Fill in the code below to numerically solve T'(x) on the interval z = 0 to 2 = 10, subject to

the initial condition 7'(0) = 300,7'(0) = —44, and then to plot the solution, 7'(z) versus .
begin code

[xSol,ySol] = ode45(

plot(

end code

(c) Next consider a boundary-value problem (BVP) for a bar with length equal to 10. Rather

than being given initial conditions (T and T at 2 = 0), the temperature is specified at one
end (z = 0), and the slope (T) is specified at the other end (z = 10) as

T(0) =300, 7(10) = —40

The differential equation for T is still the same, namely equation (1), but the form of the
given information differs from an initial value problem (IVP). In a Boundary-Value problem

26 of 31

Name:

E7 Final Exam, Fall 2013

(BVP), the challenge is to determine the missing component (7(0)) of the initial
condition, so that when the differential equation is solved as an IVP, the resultant
solution has the correct final value (7(10) = —40). Since the differential equation, (1),
is nonlinear, a numerical-based method, called shooting, can be used to solve the BVP.
The basic idea is to solve the IVP repeatedly for different values of the unknown initial
condition 7°(0), until the resultant solution at 2 = 10 satisfies the given boundary condition
T(10) = —40. This search can be automated using fzero. Below are 2 tasks that break
the problem into manageable steps.

i. Write a function getTdot10.m, with the following function declaration line
begin code

1 function tdotl0 = getTdot10(P)
end code

where the input argument, P, is a value for T'(0), the output argument tdot10 is the
value of T'(10) of the resulting solution, subject to the initial condition

- (%]

Write your solution in the box below.

begin code

1 function tdotl0 = getTdot10(P)

end code

ii. Using getTdot10, create an anonymous function (assigned to the variable H in the code
block below) that has one input argument, P (the guess for 7°(0)), such that the code
below solves for the correct value of 7'(0) such that the condition 7°(10) = —40 is
satisfied.

begin code

1 H =

3 InitialGuess = -55;
4 TdotOrequired =

end code

27 of 31

Name: E7 Final Exam, Fall 2013

Appendix of useful functions

e repmat Replicate and tile an array.

B = repmat (A, [M N]) creates a large matrix B consisting of an M-by-N tiling of copies of A.
The size of B is [size(A,1)*M, size(A,2)*N].

e find Find indices of nonzero elements.

| = find(X) returns the linear indices corresponding to the nonzero entries of the array X. X may
be a logical expression. Use IND2SUB(SIZE(X),!) to calculate multiple subscripts from the linear
indices I.

e min Smallest component.

For vectors, min(X) is the smallest element in X. For matrices, min(X) is a row vector containing
the minimum element from each column.

e Ipsolver Solves LP in standard form: min c'*x, subject to Axj=b

[optx,lambda,status,gamma] = Ipsolver(c,A,b)

e integral Numerically evaluate integral, adaptive Simpson quadrature. Q = integral(FUN,A,B)
tries to approximate the integral of scalar-valued function FUN from A to B to within an error
of 1.e-6 using recursive adaptive Simpson quadrature. FUN is a function handle. The func-
tion Y=FUN(X) should accept a vector argument X and return a vector result Y, the integrand
evaluated at each element of X.

e odedb5 Solve non-stiff differential equations, medium order method.

[TOUT,YOUT] = ode45(ODEFUN, TSPAN,Y0) with TSPAN = [TO TFINAL] integrates the sys-
tem of differential equations y' = f(t,y) from time TO to TFINAL with initial conditions YO.
ODEFUN is a function handle. For a scalar T and a vector Y, ODEFUN(T,Y) must return a
column vector corresponding to f(t,y). Each row in the solution array YOUT corresponds to a
time returned in the column vector TOUT. To obtain solutions at specific times T0,T1,..., TFINAL
(all increasing or all decreasing), use TSPAN = [TO T1 ... TFINAL].

e fzero Single-variable nonlinear zero finding.

X = fzero(FUN,XO0) tries to find a zero of the function FUN near X0

e rand Uniformly distributed pseudorandom numbers. R = rand(N) returns an N-by-N matrix
containing pseudorandom values drawn from the standard uniform distribution on the open inter-
val(0,1). rand(M,N) or rand([M,N]) returns an M-by-N matrix. rand(M,N,P,...) or rand([M,N,P,...])
returns an M-by-N-by-P-by-... array. rand returns a scalar. rand(SIZE(A)) returns an array the
same size as A.

e randn Normally distributed pseudorandom numbers.

R = randn(N) returns an N-by-N matrix containing pseudorandom values drawn from the standard
normal distribution. randn(M,N) or randn([M,N]) returns an M-by-N matrix. randn(M,N,P,...) or
randn([M,N,P,...]) returns an M-by-N-by-P-by-... array. randn returns a scalar. randn(SIZE(A))
returns an array the same size as A.

30 of 31

Name: E7 Final Exam, Fall 2013

e interpl 1-D interpolation (table lookup)

Vq = interpl(X,V,Xq) interpolates to find Vq, the values of the underlying function V=F(X) at
the query points Xgq. X must be a vector of length N. If V is a vector, then it must also have
length N, and Vq is the same size as Xq. If V is an array of size [N,D1,D2,...,Dk], then the
interpolation is performed for each D1-by-D2-by-...-Dk value in V(i,:,:,...,:). If Xq is a vector of
length M, then Vq has size [M,D1,D2,...,Dk]. If Xq is an array of size [M1,M2,...,M]], then Vq is
of size [M1,M2,...,Mj,D1,D2,...,DK].

Vq = interpl(V,Xq) assumes X = 1:N, where N is LENGTH(V) for vector V or SIZE(V,1) for
array V.

Vq = interpl(X,V,Xq,METHOD) specifies alternate methods. The default is linear interpolation.
Use an empty matrix [] to specify the default. Available methods are:

'nearest’ - nearest neighbor interpolation
'linear’ - linear interpolation

'spline’ - spline interpolation

31 of 31

